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ON THE TOTAL RESTRAINED DOUBLE ITALIAN
DOMINATION

A. MOHANNAD AND D. A. MOJDEH∗

Abstract. A double Italian dominating (DID) function of a graph
G = (V,E) is a function f : V (G) → {0, 1, 2, 3} having the
property that for every vertex v ∈ V ,

∑
u∈NG[v] f(u) ≥ 3, if

f(v) ∈ {0, 1}. A restrained double Italian dominating (RDID)
function is a DID function f such that the subgraph induced by
the vertices with label 0 has no isolated vertex. A total restrained
double Italian dominating (TRDID) function is an RDID function
f such that the set {v ∈ V : f(v) > 0} induces a subgraph with no
isolated vertex.
We initiate the study of TRDID function of any graph G. The
TRDID and RDID functions of the middle of any graph G are in-
vestigated, and then, the sharp bounds for these parameters are
established. Finally, for a graph H, we provide the minimum value
of TRDID and RDID functions for corona graphs, H ◦K1, H ◦K2

and middle of them.

1. Introduction

For definitions and notations not given here we refer to [9, 25]. For
a set S ⊆ V , the open neighbourhood is N(S) =

⋃
v∈S N(v) while the

closed neighbourhood is N [S] = N(S) ∪ S. The degree of vertex v ∈ V
is d(v) = dG(v) = |N(v)|. The maximum degree and minimum degree
of G are denoted by ∆ = ∆(G) and δ = δ(G), respectively. For a subset
D of vertices in a graph G, we denote by G[D], as a subgraph induced
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by D. The middle graph M(G) of a graph G is the graph whose vertex
set is V (G)∪E(G), and two vertices of M(G) are adjacent if and only
if either they are adjacent edges of G or one is a vertex and the other is
an edge of G, incident with it. A complete graph of order n, a complete
bipartite graph with two partite sets of cardinalities m and n, and a
star graph of order n+1 are denoted by Kn, Km,n, K1,n respectively. A
double star Sp,q is a tree with only two support vertices such that one
of them has p leaves and the other has q leaves. A graph with only one
vertex is said to be a trivial graph. Finally Cn, Pn denote the cycle,
path with n vertices respectively. The corona G1 ◦ G2 of two graphs
G1 and G2 (where Gi is of order ni) is defined as the graph G obtained
by taking one copy of G1 and n1 copies of G2, and then joining by an
edge of the ith vertex of G1 to every vertex in the ith copy of G2. For
a simple graph G, an edge cover set of G is a set of edges such that
every vertex of the graph is incident to at least one edge of the set. The
minimum cardinality of any edge cover set is called edge cover number,
denoted by c = c(G) [25].

For a graph G with no isolated vertex, a set S of vertices of G such
that every vertex of G is adjacent to at least one vertex in S is called a
total dominating (TD) set of G. In the other words, S is a TD set of G if
S is a dominating set of G and G[S] has no isolated vertex. A minimum
cardinality of a TD set of G is called total domination number denoted
by γt(G). A restrained dominating set is a subset R of V such that the
subgraph induced by V − R has no isolated vertex. A minimum size
of any restrained dominating set of G is called restrained domination
number denoted by γr(G). Restrained domination was formally defined
by Domke et al. in [7]. For more information on this parameter we
refer the reader to the survey paper [10].

Roman domination was introduced by Cockayne et al. in [6], al-
though this notion was inspired by the work of ReVelle et al. in [18],
and Stewart in [19]. The original study of Roman domination was mo-
tivated by the defense strategies used to defend the Roman Empire
during the reign of Emperor Constantine the Great, 274-337 A.D. He
decreed that for all cities in the Roman Empire, at most two legions
should be stationed. For more details and some applications see [5, 22].

Chellali et al. [4] have introduced a Roman {2}-dominating function
f . Roman {2}-domination is a generalization of Roman domination
that has also studied by Henning et al. [11] with the name of Ital-
ian dominating function. In terms of the Roman Empire, the Italian
dominating strategy requires that every location with no guard has
a neighboring location with two guards, or at least two neighboring
locations with one guard each.
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Formally, an Italian dominating (ID) function f : V → {0, 1, 2} such
that for every vertex v ∈ V , with f(v) = 0, f(N(v)) ≥ 2, that is,
either there is a vertex u ∈ N(v) with f(u) = 2, or there exist at
least two vertices x, y ∈ N(v) with f(x) = f(y) = 1. Note that for
an ID function f , it is possible that f (N [v]) ≥ 1 for some vertex with
f(v) = 1. The weight of an ID function is the sum w(f) =

∑
v∈V (G) f(v)

and the minimum weight of an ID function f is the Italian domination
number, denoted by γI(G), see also [20, 24].

Beeler et al. [3] have defined double Roman domination. What they
propose is a stronger version of Roman domination that doubles the
protection by ensuring that any attack can be defended by at least two
legions. In Roman domination at most two Roman legions are deployed
at any one location. But as we will see in what follows, the ability to
deploy three legions at a given location provides a level of defense that is
both stronger and more flexible, at less than the anticipated additional
cost.

A double Roman dominating (DRD) function on a graph G is a
function f : V → {0, 1, 2, 3} such that the following conditions are met:

(a): If f(v) = 0, then vertex v must have at least two neighbors
in V2 or one neighbor in V3.

(b): If f(v) = 1, then vertex v must have at least one neighbor
in V2 ∪ V3.

The weight of a DRD function f on G is the sum w(f) =
∑

v∈V (G) f(v)

and the minimum weight of w(f) for every double Roman dominating
function f on G is called double Roman domination number of G de-
noted by γdR(G) and a DRD function of G with weight γdR(G) is called
a γdR(G) function of G, see more in [8, 14, 16, 21].

Mojdeh and Volkmann [17] considered a variant of double Roman
domination and Italian domination which they called double Italian
domination. What they proposed, is a stronger version of Roman and
Italian domination that support the protection by ensuring that any
attack can be defended by at least three or more legions from one or
more other locations.

A double Italian dominating DID (Roman {3} dominating) function
is a function f : V (G)→ {0, 1, 2, 3} having the property that for every
vertex u ∈ V , if f(u) ∈ {0, 1}, then f(N [u] ≥ 3). Formally, a DID
function f : V (G)→ {0, 1, 2, 3} has the property that for every vertex
v ∈ V , with f(v) = 0, there exist at last either three vertices in V1 ∩
N(v) or one vertex in V1 ∩ N(v) and one vertex in V2 ∩ N(v) or two
vertices in V2 ∩N(v) or one vertex V3 ∩N(v). The weight of the DID
function is the sum w(f) = f(v) =

∑
v∈V f(v), and the minimum



108 MOHANNAD AND MOJDEH

weight of DID function f is the double Italian domination number,
denoted by γdI(G), see also [1, 2, 12, 13].

Here we define the restrained double Italian domination (double Ital-
ian dominating set for which each vertex with label 0 has a neighbor
with label 0). In terms of the double Italian Empire, this defense
strategy requires that every location with no legion has at least also a
neighboring location with no legion for lessing the cost of expenses of
Empire.

A restrained double Italian dominating function (RDID) function is
a DID function such that V0 = {v ∈ V : f(v) = 0} induces a subgraph
with no isolated vertex. A minimum weight of any RDID function f
is called a restrained double Italian domination number denoted by
γrdI(G) [23]. It is necessary to note that, there have been done some
research works on restrained double Roman domination so far, [15].

In terms of restrained double Italian Empire, as well if we assume
that any location with guards can be adjacent to a location with a
guard, equivalently, any vertex with positive label has a neighbor vertex
of positive label. This defense strategy is for lessing the cost of expenses
of empire and more security. Further, this strategy provides a more
flexible and stronger level of defense which is named total restrained
double Italian dominating function.

Definition 1.1. A total restrained double Italian dominating function
(TRDID) Function is a restrained double Italian dominating function
such that the subgraph induced by the set {v ∈ V : f(v) 6= 0} has
no isolated vertex. A minimum weight of any TRDID function f is
called a total restrained double Italian domination number denoted by
γtrdI(G).

In the other words, a (TRDID) Function f is a DID function such
that at the same time the sets {v ∈ V (G) : f(v) = 0} and {v ∈ V (G) :
f(v) > 0} induce subgraphs without isolated vertices.

It is obvious that γdI(G) ≤ γrdI(G) ≤ γtrdI(G).
Our motivation for using middle graphs is to expand the two concepts
RDID, TRDID functions, and make the defense strategy as favorable
as possible.

This paper is organized as follows. The exact values of RDID func-
tion of Middle of standard graphs are established in Section 2. We
study the TRDID function for standard graphs and middle of them
and determine the precise value of γtrdI(G) for these graphs in Sec-
tion 3. We peruse the exact bound on the RDID and TRDID function
of M(G) for any graph G in Section 4, and finally, these parameters
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are provided with the precise value for corona graphs G = H ◦ K1,
G = H ◦K2 and middle of them in Section 5.

2. RDID function of middle of standard graph

In this section we determine the restrained double Italian domination
number of middle graph for cycles, paths, complete, star, complete
bipartite and double star graphs

Volkmann [23] showed that.

Observation 2.1. ([23] Observation 2) If n ≥ 3 is an integer, then
γrdI(Cn) = n.

Proposition 2.2. For any cycle Cn, γrdI (M(Cn)) = d3n
2
e.

Proof. Let Cn be a cycle with vertex set V (Cn) = {v1, v2, · · · , vn}. Let
M(Cn) be the middle of Cn and V (Cn) ∪ {u1,2, u2,3, · · · , un−1,n, un1}
be the set of vertices of M(Cn) where ui,i+1 is the new vertex corre-
sponding to edge e = vivi+1. For n even, devoting value 3 to each
vertex in the set {u2i−1,2i : 1 ≤ i ≤ n

2
} and zero otherwise (Figure

1 M(C6)) and for n odd, devoting value 3 to each vertex in the set
{u2i−1,2i : 1 ≤ i ≤ n−1

2
}, value 2 to vn and zero otherwise (Figure 1

M(C7)), show that γrdI (M(Cn)) ≤ d3n
2
e. On the other hand, for any

RDID function f and any set

A = {vi, vi+1, vi+2, vi+3, ui,i+1, ui+1,i+2, ui+2,i+3, ui+3,i+4}
or

A = {vi, vi+1, vi+2, vi+3, ui−1,i, ui,i+1, ui+1,i+2, ui+2,i+3},
f(A) ≥ 6. Sinc M(Cn) has 2n vertices, f(M(Cn)) ≥ 62n

8
= 3n

2
. There-

fore γrdI (M(Cn)) ≥ d3n
2
e. It proves the result. �

From Observation 2.1 and Proposition 2.2, we have.

Corollary 2.3. For any cycle Cn, γrdI (M(Cn)) = γrdI(Cn) + c(Cn),
where c(Cn) is the edge cover number of cycle Cn.

In [23] author showed that.

Observation 2.4. ([23] Observation 3) If n ≥ 4 is an integer, then
γrdI(Pn) = n+ 2.

Now we have.

Proposition 2.5. For any n ≥ 2 and for path Pn, γrdI (M(Pn)) =
d3n

2
e+ 1.
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Figure 1. Restrained double Italian domination of M(Cn)

Proof. Let Pn be a path with vertex set V (Pn) = {v1, v2, · · · , vn}. Let
M(Pn) be the middle of Pn and V (Pn) ∪ {u1,2, u2,3, · · · , un−1,n} be the
vertex set of V (M(Pn)) where ui,i+1 is the vertex corresponding to edge
e = vivi+1 where 1 ≤ i ≤ n− 1. If n is even, we devote the value 2 to
the vertices v1, vn and value 3 to the vertices u2i,2i+1 for 1 ≤ i ≤ n−2

2
(Figure 2, M(P4)).

For n odd, we devote the value 1 to the vertices vn, value 2 to v1
and value 3 to the vertices u2i,2i+1 for 1 ≤ i ≤ n−1

2
(Figures 2, M(P5)).

These show that γrdI (M(Pn)) ≤ d3n
2
e+ 1, for n ≥ 2.

Conversely, on the contrary, γrdI (M(Pn)) ≤ d3n
2
e. First we show

that any ui,i+1 cannot be devoted by value 2 or 1 under any γrdI-
function. Let f be a such function and f(ui,i+1) = 2. Then f(vi)
and f(vi+1) must be positive. Because, if each of them is assigned 0,
then f(ui+1,i+2) = 2 or f(ui−1,i) = 2. This is impossible, since it is
restrained. Now we bring up some cases.
Case 1. Let f(v1) = f(vn) = 2. Then f(un−1,n) ≤ 1 and f(u1,2) ≤ 1.
In this situation the weights of vertices adjacent to un−1,n or u1,2 do not
related to the weights of un−1,n or u1,2. From M(Pn) via adding vertex
un,1 and make adjacent it to vn, v1, u1,2 and un−1,n, a. M(Cn) is formed.
If we define g on M(Cn) with g(un,1) = 3, g({v1, vn, u1,2, un−1,n}) = 0
and g(x) = f(x) otherwise, then w(g) ≤ w(f)− 1 < d3n

2
e a contradic-

tion.
Case 2. Let f(v1) = 1 or f(vn) = 1. In this part, f(un,1) or f(u1,2) is la-
beled by value 3. If f(u1,2) = 3, then we define g on M(Cn), via g(v1) =
g(u1,2) = 0 and g(x) = f(x) otherwise, then w(g) ≤ w(f) − 1 < d3n

2
e

a contradiction. These conflicts show that γrdI (M(Pn)) ≥ d3n
2
e + 1.

Therefore the result is observed. �
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Figure 2. Restrained double Italian domination of M(Pn)

From Observation 3.6 and Proposition 2.5, we have.

Corollary 2.6. γrdI (M(Pn)) = γrdI(Pn) + dn−2
2
e.

In [23] we have the following.

Observation 2.7. ([23] Observation 1) (i) γrdI(Kn) = 3 for n ≥ 2.
(ii) γrdI(K1,n) = n+ 2 for n ≥ 1.
(iii) γrdI(K2,2) = 4, γrdI(K2,3) = 5 and γrdI(Km,n) = 6 for m,n ≥ 2
and m+ n ≥ 6.

Here we investigate γrdI number of middle of Kn, K1,n and Km,n.

Proposition 2.8. For any complete graph Kn, γrdI (M(Kn)) = d3n
2
e.

Proof. Let Kn be a complete graph and V (Kn) = {v1, v2, · · · , vn} be its
vertex set. Let M(Kn) be the middle of Kn, with vertex set V (Kn) ∪
{ui,j : 1 ≤ i < j ≤ n} where ui,j is the vertex corresponding to edge e =
vivj. For n even, devoting value 3 to the u1,2, u3,4, . . . , un−1,n and zero
otherwise and for n odd, devoting value 3 to the u1,2, u3,4, . . . , un−2,n−1,
value 2 to vn and zero otherwise, gives us an RDID function f with
w(f) = d3n

2
e. This shows that, γrdI (M(Kn)) ≤ d3n

2
e.

Conversely, for any two vertices vi, vj, define Vi,j = {vi, vj}∪{ui,k, uj,l :
k ≥ i+1, and l ≥ j+1}. Let n be even, and f be a γrdI(M(Kn)) func-
tion. Then f(V2i−1,2i) ≥ 3 for 1 ≤ i ≤ n

2
. Therefore γrdI(M(Kn)) ≥ 3n

2
.

If n is odd, and f is a γrdI(M(Kn)) function, then f(V2i−1,2i) ≥ 3, for
1 ≤ i ≤ n−1

2
and in this case f(Vn) must be at least 2. Therefore

γrdI(M(Kn)) ≥ 3(n−1)
2

+ 2 = d3n
2
e. Thus the result holds. �

In [23] we have for star graph K1,n, γrdI(K1,n) = n+ 1.
We now study restrained double Italian domination of middle of star
graph, M(K1,n).

Proposition 2.9. For star K1,n we have γrdIM(K1,n) = 2n+ 2.



112 MOHANNAD AND MOJDEH

Proof. Let V (K1,n) = {v0, v1, · · · , vn}. Let M(K1,n) be the middle of
K1, n with vertex set V (M(K1,n)) = V (K1,n) ∪ {u0,1, u0,2, · · · , u0,n}
where u0,i is the vertex corresponding to edge ei = v0vi. M(K1, n) is
formed from Kn+1 with vertices v0 and u0,i for 1 ≤ i ≤ n, such that
the vertex vi is a leaf neighbor of u0,i for 1 ≤ i ≤ n. Let f be a
γrdI function. Then f(vi) + f(u0,i) ≥ 2, ∪kj=1f(u0,j) ∪ f(v0) ≥ 2 and
f(vi) ≥ 1 (1 ≤ i ≤ k). These show that γrdIM(K1,n) ≥ 2n+ 2 (Figure
3). On the other hand, the assignment 2 to each vi for 0 ≤ i ≤ n
gives us an RDID function of M(K1,n) of weight n + 1. Therefore
γrdIM(K1,n) ≤ 2n+ 2. Thus the proof is observed. �

22

22

2

0 0

00

Figure 3. Restrained double Italian domination of M(K1,4)

As a prompt result we have γrdI(M(K1,n)) = 2γrdI(K1,n).

Proposition 2.10. Let Km,n be a complete bipartite graph with m ≥ n.
Then γrdI (M(Km,n)) = 2m+ n.

Proof. Let M,N be two partite sets of graph Km,n, with the set of ver-
tices M = {v1, v2, · · · , vm} and N = {w1, w2, · · · , wn}. Let M(Km,n)
be the middle of Km,n with vertex set V (M(Km,n)) = V (Km,n)∪{ui,j :
1 ≤ i ≤ m and 1 ≤ j ≤ n}, where ui,j is the vertex corresponding to
edge e = viwj. Now devoting value 3 to the vertex uj,j for 1 ≤ j ≤ n,
value 2 to r = m − n vertices like vn+k where 1 ≤ k ≤ m − n in M ,
deduce that γrdI (M(Kn,m)) ≤ 3n+ 2(m− n) = 2m+ n.

Let now Vk,k = {vk, wk}∪ {uk,k, uk,j, ui,k : k+ 1 ≤ j ≤ n, k+ 1 ≤ i ≤
m} where 1 ≤ k ≤ n and Vn+l = {vn+l} for 1 ≤ l ≤ m − n. If f is a
γrdI(M(Km,n)) function, then f(Vk,k) ≥ 3 and so f(Vm+l) must be at
least 2. Hence γrdI(M(Km,n)) ≥ 3n + 2(m − n) = 2m + n. Therefore
γrdI(M(Km,n)) = 2m+ n. �

Let Sp,q be a double star and p, q ≥ 2. It is easy to see that.

Observation 2.11. For double star Sp,q, γrdI(Sp,q) = p+ q + 4.
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Proposition 2.12. For double star Sp,q, with p, q ≥ 2, γrdI(M(Sp,q)) =
2(p+ q) + 3.

Proof. Let V (Sp,q) = {u0, u1, · · · , up, v0, v1, · · · , vq}. Let M(Sp,q) be
the middle of Sp,q and V (M(Sp,q)) = V (Sp,q) ∪ {x0,1, x0,2, · · · , x0,p} ∪
{y0,1, y0,2, · · · , y0,q}∪{z0} where x0,i, y0,j is the vertex corresponding to
edge e = u0ui, v0vj and z0 is a vertex corresponding to e = u0v0. As we
see in Figure 4, M(S(3, 4)), the set {u0, x0,1, x0,2, · · · , x0,p} induces a
clique of order p+1, also the set {v0, y0,1, y0,2, · · · , y0,p} induces a clique
of order q + 1 in M(Sp,q). The vertex z0 is adjacent to all vertices of
these two cliques. The vertex ui is a leaf neighbor of x0,i for 1 ≤ i ≤ p
and vertex vj is a leaf neighbor of y0,j for 1 ≤ j ≤ q in M(Sp,q). It
is clear, under any RDID function, any leaf has a positive weight and
summation of the value of any leaf and value of its support must be
at least 2, furthermore, if we devote label 1 to a leaf, then its support
must be devoted by value 2. On the other hand, for any RDID function
f of M(Sp,q), f(N [z0]) ≥ 3. Thus γrdI(M(Sp,q)) ≥ 2(p + q) + 3. Since
assignments 2 to any leaf and 3 to z0 leads to an RDID function of
weight 2(p + q) + 3, thus γrdI(M(Sp,q)) ≤ 2(p + q) + 3. Therefore we
observe the result. �

0 0 0 0 0 0 0

30 0

2 2 2 2 2 2 2

M(S3,4)

Figure 4. Restrained double Italian domination of M(S3,4)

3. TRDID function of middle of standard graph

In this section we determine the total restrained double Italian dom-
ination number of middle graph for cycles, paths, complete, star, com-
plete bipartite and double star graphs.

Proposition 3.1. For any cycle Cn, γtrdI (M(Cn)) = 2n.

Proof. Let Cn be a cycle with vertex set V (Cn) = {v1, v2, · · · , vn}.
Let M(Cn) be the middle of Cn with vertex set as stated in Propo-
sition 2.2. Assigning value 1 to the all vertices in M(Cn) shows that
γtrdI (M(Cn)) ≤ 2n (Figure 5).
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On the other hand, we prove that for any TRDID function f of
M(Cn), w(f) ≥ 2n. First, we show that, any vertex of M(Cn) under
any TRDID function f cannot be necessarily devoted by label 2. On
the contrary, let f(vi) = 2. Then f(ui,i+1) ≥ 1 or f(ui−1,i) ≥ 1. If two
of them are positive, then we change f(vi) = 1.
So let f(vi) = 2 and f(ui−1,i) ≥ 1 or f(ui,i+1) = 0. If f(ui−1,i) ≥ 2,
then we change f(vi) = 1.
Let f((vi)) = 2, f(ui−1,i) = 1 and f(ui,i+1) = 0. Then f(vi+1) =
0, f(ui+1,i+2) = 3, f(vi+2) = 1 and f(ui+2,i+3) ≥ 0. If f(vi−1) ≥ 2,
then we change f(ui−1,i) = 3, f(vi−1) = 1, f(vi) = 0. Hence, it is not
necessarily, a vertex of M(Cn) is assigned by label 2.
Now we display that, all vertices are devoted by only value 1, or all vis
are devoted by 1 or 0, and all (ui,i+1)s by values 0 or 3, for (1 ≤ i ≤ n),
(mod n).
If for a vertex vi, f(vi) = 3, then f(ui,i+1) + f(ui−1,i) ≥ 1. But in this
mood, we change f(vi) to 1 or 2. Thus f(vi) ≤ 1.
If f(ui,i+1) = 3, then f(vi) = 1, f(ui+1,i+2) = f(vi+1) = 0. This assign-
ments can be continued with f(ui+2,i+3) = 3, f(vi+3) = 1, f(ui+3,i+4) =
f(vi+4) = 0, (mod n). This devoting leads to w(f) = 2n.
If f(ui,i+1) = 3, f(vi) = 1, f(ui+1,i+2) = f(vi+1) = 1, but f(ui+2,i+3) =
3, f(vi+3) = 1, then we change f(ui+1,i+2) = f(vi+1) = 0.
If f(ui,i+1) = 3, f(vi) = 1, f(ui+1,i+2) = f(vi+1) = f(ui+2,i+3) =
f(vi+3) = 1, then we change f(ui+1,i+2) = f(vi+1) = 0 and f(ui+2,i+3) =
3.
If f(ui,i+1) = 1, it is clear that, f(vi+1) = f(ui+1,i+2) = f(vi) =
f(ui−1,i) = 1 and so all vertices are devoted by value 1. Now there
exits two situations.

1. Let n be even (Figure 5, M(C6)). We must assign the label 1, to all
vertices, or f(u2i−1,2i) = 3, f(v2i) = 1, and f(u2i,2i+1) = f(v2i+1) = 0,
for 1 ≤ i ≤ n

2
. Therefore w(f) ≥ 2n. This proves f is a γtrdI function

with w(f) = 2n for n even.
2. Let n be odd (Figure 5, M(C7)). We display all vertices should be

devoted by only value 1 under any γtrdI function f . For this, assume
that there is a TRDID function f such that, f(u1,2) = 3, f(v2) = 1,
f(u2,3) = f(v3) = 0. This process leads to f(u2i+1,2i+2) = 3, f(v2i) = 1,
f(u2i+2,2i+3) = f(v2i+3) = 0, for 1 ≤ i ≤ n−1

2
. Therefore f(un−2,n−1) =

3, f(vn−1) = 1, f(un−1,n) = f(vn) = 0. In this status, we should have
f(un,1) = 3, f(v1) = 1. This indicates w(f) = 2n+ 1 > 2n. Therefore,
all vertices must be assigned label 1. Thus the desired result holds. �

By Observation 2.1 and since any TRDID function is an RDID func-
tion, we obviously have.
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Figure 5. Total restrained double Italian domination of M(Cn)

Observation 3.2. For any cycle graph Cn, γtrdI (Cn) = n = γrdI (Cn).

From Proposition 2.2 we have.

Observation 3.3. For any cycle Cn, γtrdI (M(Cn)) = 2γtrdI (Cn).

Corollary 3.4. γtrdI (M(Cn)) = γrdI (Cn) + α(Cn) where α(Cn) is the
independence number of Cn.

Now we discuss on TRDID function of M(Pn).

Proposition 3.5. For any path Pn, γtrdI (M(Pn)) =

{
2n if 2 | n
2n+ 1 if 2 - n

.

Proof. Let Pn be a path with vertex set V (Pn) = {v1, v2, · · · , vn}. Let
M(Pn) be the middle of Pn with vertex set as stated in Proposition 2.5
Any TRDRD function f devote labels positive weight to the vertices
v1, u1,2, un−1,n and vn, such that f(v1) + f(u1,2) + f(v2) ≥ 4 and
f(vn) + f(un−1,n) ≥ 3. Thus we bring up two situations.

1. Let n be an even integer. We devote value 1 to any vertex in the
set vertex {v1, v2i : 2 ≤ i ≤ n

2
}, value 3 to any vertex of the set vertex

{u2i−1,2i : 1 ≤ i ≤ n
2
}, and zero otherwise (Figure 6, M(P6)). Thus

γtrdI(M(Pn)) ≤ 2n. On the other hand, let f be a TRDID function
with w(f) ≤ 2n − 1. By adding a vertex un,1 and make adjacent the
vertex un,1 to vertices v1, vn, u1,2 and un−1,n. The resulted graph is
M(Cn). Now define g on the resulted M(Cn) with g(un,1) = g(v1) = 0,
g(u1,2) = 3, g(v2) = 1 and g(x) = f(x) otherwise. This g is a TRDID
function with w(g) = w(f) ≤ 2n− 1 a contradiction with Proposition
3.1.

2. Let n be an odd integer. We devote any vertex of the set vertex
{v1, vn, v2i : 2 ≤ i ≤ n−1

2
} value 1, and any vertex of the set vertex
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{u2i−1,2i : 1 ≤ in−1
2
} value 3, and value 2 to the vertex un−1,n, value 0

to otherwise (Figure 6, M(P5)). Thus γtrdI (M(Pn)) ≤ 2n+ 1.
On the other hand, let f be a TRDID function with w(f) ≤ 2n. It is
well known that f((un−1,n) + f(vn) ≥ 3 and f(v1) + f((u1,2) + f(v2) ≥
4. By adding a new vertex un,1 to M(Pn) and make adjacent the
vertex un,1 to vertices v1, vn, u1,2 and un−1,n. The resulted graph is
M(Cn). Now define g on the resulted M(Cn) with g(un,n+1) = 0 =
g(v1), g(u1,2) = 3, g(v2) = 1, and g(x) = f(x) otherwise. This g is a
TRDID function with w(g) = w(f) ≤ 2n where some vertices assigned
by 2 or 3, a contradiction with Proposition 3.1. Therefore, the result
is proved. �

1 3 0 0 0 3 1
M(P5)

1 2

1 3 0 0 0 3 1
M(P6)

0 0 3 1

Figure 6. Total restrained double Italian domination of M(Pn)

From Observation 3.6 and devoting label 2 to the vertices v1, v2 and
1 otherwise of path Pn, we have.

Observation 3.6. For any path Pn (n ≥ 4), γtrdI (Pn) = n+ 2.

Due to Proposition 3.5 and Observation 3.6, we obtain.

Observation 3.7. For any path Pn,
1. γtrdI (M(Pn)) = 2γtrdI (Pn)− 4 for n even.
2. γtrdI (M(Pn)) = 2γtrdI (Pn)− 3 for n odd.

From Propositions 2.5 and 3.5 we get the following outcome.

Corollary 3.8. γtrdI (M(Pn)) = γrdI (M(Pn)) + dn−1
2
e.

Now we moot on TRDID of M (Kn).

Proposition 3.9. For any complete graph Kn,

γtrdI (M (Kn)) =

{
3dn

2
e+ dn

4
e if 2 | n

3dn
2
e+ bn

4
c if 2 - n

.
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Proof. Let Kn be a complete graph with V (Kn) = {v1, v2, · · · , vn}.
Let M(Kn) be the middle of Kn, with vertex set as stated in Propo-
sition 2.8. For n even, devoting value 3 to the u1,2, u3,4, . . . , un−1,n,
value 1 to u1,3, u5,7, . . . , un−3,n−1 and zero otherwise improve a TRDID
function f with w(f) ≤ 3dn

2
e + dn

4
e. For n odd, devoting value 3 to

the u1,2, u3,4, . . . , un−2,n−1, un−1,n, value 1 to u1,3, u5,7, . . . , un−4,n−2, and
zero otherwise, improves a TRDID function f with w(f) ≤ 3dn

2
e+bn

4
c.

Conversely, for any two vertices vi, vj, define Vi,j = {vi, vj}∪{ui,k, uj,l :
k ≥ i + 1, and l ≥ j + 1}. Let n be even, and f be a γtrdI(M(Kn))
function. Then f(V2i−1,2i) ≥ 3 for 1 ≤ i ≤ n

2
. Furthermore, for any two

sets V2i−1,2i, V2i+1,2i+2, the totality of f requires that we need one vertex
like u2k,2k+1 with positive weight for odd k where 1 ≤ k ≤ n

2
(mod n).

Therefore γtrdI(M(Kn)) ≥ 3n
2

+ dn
4
e.

If n is odd, and f is a γtrdI(M(Kn)) function, then f(V2i−1,2i) ≥ 3, for
1 ≤ i ≤ n−1

2
and in this status f(Vn,n+1) ≥ 3. Furthermore, for any

two sets V2i−1,2i, V2i+1,2i+2, the totality of f requires that we need one
vertex like u2k,2k+1 with positive weight under f for odd k where 1 ≤
k ≤ n−1

2
(mod n). Therefore γtrdI(M(Kn)) ≥ 3(n+1)

2
+bn

4
c = 3dn

2
e+bn

4
c.

Thus the result is proved. �

As an prompt outcome from Propositions 2.8 and 3.9, we get.

Corollary 3.10. γtrdI(M(Kn)) = γrdI(M(Kn))+dn
4
e for any complete

graph Kn.

From matriculate of Proposition 2.9, we get the following outcome,
which has a simple proof. Because of, for any TRDID function f of
M(K1,n), all leaves and support vertices must be devoted by positive
value and if v is a leaf and w of its support, then f(v) + f(w) ≥ 3. See
Figure 7.

Proposition 3.11. For star K1,n, γtrdI(M(K1,n)) = 3n+ 1.

As an instant result from Propositions 2.9 and 3.11 one can have.

Corollary 3.12. γtrdI(M((K1,n))) = γrdI(M((K1,n))) + (n− 1).

In [23] RDID of complete bipartite graphs has been studied. In
section 2, RDID of middle of complete bipartite graphs was perused.
Here we would like to check TRDID number on middle of complete
bipartite graphs.

Proposition 3.13. Let Km,n be a complete bipartite graph with m ≥
n ≥ 2. Then

γtrdI (M (Km,n)) =

{
3m if m ≥ 2n

3m+ d2n−m
2
e otherwise

.
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11

11

1

2 2

22

Figure 7. Total restrained double Italian domination of M(K1,4)

Proof. Let M,N be two partite sets of graph Km,n and n ≥ m where
M = {v1, v2, · · · , vm} and N = {w1, w2, · · · , wn}. Let M(Km,n) be the
middle of Km,n with vertex set as stated in 2.10. Further, in M(Km,n)
we have m cliques of size n, or n cliques of size m. Now we bring forth
some cases.

Case 1. Let m ≥ kn where k ≥ 2. Now devoting value 3 to the vertex
uj,j for 1 ≤ j ≤ n, and utn+r,r where 1 ≤ t ≤ k and 1 ≤ r < n, (tn+r ≤
m), and zero otherwise infer that γtrdI (M(Km,n)) ≤ 3n+3(m−n) = 3m
(Figure 8, M(K5,2)).
On the other hand, we have m clique and for total restrained double
Italian dominating requires at least two vertices of positive weights
which sum of them at least 3. This grantees a TRDID function of
weight 3m on M(Km,n). Thus γtrdI(M(Km,n)) ≥ 3m and it establishes
γtrdI(M(Km,n)) = 3m for m ≥ 2n.

Case 2. Let n ≤ m < 2n and p = m− n. Let now Vk,k = {vk, wk} ∪
{uk,k, uk,j, ui,k : k + 1 ≤ j ≤ n, k + 1 ≤ i ≤ m} where 1 ≤ k ≤ n
and Vn+r = {vn+r} ∪ {un+r,j : 1 ≤ j ≤ n} for 1 ≤ r ≤ p. If f is a
γtrdI(M(Km,n)) function, then f(Vk,k) ≥ 3 and also f(Vn+r) ≥ 3. If we
bring up f(uk,k) = 3 = f(un+k,k), then the set Vk,k for 1 ≤ k ≤ p has
the totality property, but the set Vk,k for p+ 1 ≤ k ≤ n has no totality
property. Thence by setting at least one common vertex of positive
weight betwee two such Vk,k for p+1 ≤ k ≤ n and since n−p = 2n−m,
w(f) ≥ 3m + d2n−m

2
e. This grantees γrdI(M(Km,n)) ≥ 3m + d2n−m

2
e

(Figure 8, M(K4,3)).
On the other hand, we allocate label 3 to vertices uk,k, 1 ≤ k ≤ n,
un+r,r, (1 ≤ r ≤ p). Furthermore, if n − p is even, allocate label
1 to up+1,p+2, up+3,p+4, · · · , un−1,n, and if n − p is odd, allocate 1 to
up+1,p+2, up+3,p+4, · · · , un−2,n−1, un−1,n. This grantees γrdI(M(Km,n)) ≤
3m+ d2n−m

2
e. �
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M(K5,2) M(K4,3)

Figure 8. Total restrained double Italian domination of M(Km,n)

From the Propositions 2.10 and 3.13 we have.

Corollary 3.14. Let m ≥ n ≥ 2. Then

γtrdI(Km,n) =

{
γrdI(Km,n) +m− n if m ≥ 2n

γrdI(Km,n) + dm
2
e otherwise

.

Let Sp,q be a double star and p, q ≥ 2. Via Observation 2.11, it is
observed that.

Observation 3.15. For double star Sp,q, γtrdI(Sp,q) = p+ q + 4.

Proposition 3.16. If p, q ≥ 2, then γtrdI(M(Sp,q)) = 3(p+ q).

Proof. Any TRDID function f devotes positive value to all leaves and
their support vertices and for any leaf v and its support u, f(v) +
f(u) ≥ 3. Now using symbolization of Proposition 2.12 and Figure 9,
we have γtrdI(M(Sp,q)) ≥ 3(p+ q). On the other hand, it is forthright,
devoting label 1 to all leaves and label 2 to support vertices and 0
otherwise, deduce a TRDID function of weight 3(p + q) (Figure 9).
This establishes, γtrdI(M(Sp,q)) ≤ 3(p + q). Therefore the proof is
explicit. �

As an immediate of Propositions 2.12 and 3.16, we have.

Corollary 3.17. γtrdI(Sp,q) = γrdI(Sp,q) + p+ q − 3.

4. Bound on the γrdI and γtrdI of Middle of a graph

In this section we center our attention on presenting bounds for mid-
dle of any graph. Assume that Q denote the edge cover set of minimum
size c.

Theorem 4.1. Let G be a graph of order n. Then γrdI(G) ≤ 3c + `
where c is the edge cover number and ` is the number of leaves. This
bound is sharp.
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2 2 2 2 2 2 2
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γtrdI(M(S3,4))

Figure 9. Total restrained double Italian domination of M(S3,4)

Proof. Let Q be an edge cover set of minimum cardinality c. We bring
up two parts.

1. Each vertex has an incident edge, which is not in Q. In this
position, we devote label 3 to each edge in Q and 0 to edges which are
not in Q and vertices of degree at least 2, and label 1 to the leaves.
These assignments grantee an RDID function of M(G) of weight at
most 3c+ `. Thence γrdI(G) ≤ 3c+ `.

2. There are vertices, such that all their incident edges are in Q. We
devote label 0 to these edges and 2 to their end vertices. Further, we
devote label 3 to another edges in Q, label 0 to their end vertices of
degree at least two, and label 1 to their end vertices of degree one. Let
vk be the only vertex such that all k edges incident to vk be in Q. Then
by the above assignments, γrdI(G) ≤ 3(c − k) + 2k + 2 + ` ≤ 3c + `.
If the number of such vertices are more than one, then this inequality
is not hard to see. Therefore these assignments grantee an RDIDF of
M(G) of weight at most 3c+ `. Thus we observe the desired result.
For seeing the sharpness, bring up the graph G, constructed from Cm

and Pn with odd n and m, where one of the end vertices of Pn make
adjacent to one vertex of Cm. Then γrdI(M(G)) = 3c+ 1 = 3c+ `. �

Theorem 4.2. Let G be a graph of order n, then γtrdI(G) ≤ 4c; where
c is the edge cover number of G. This bound is sharp.

Proof. Let Q be the edge cover set of minimum cardinality c. By the
definition of edge cover set, we deduce, each vertex has an incident edge
in Q and Each pendant edge stands in Q. For establishing the result,
we bring up two parts.

1. Each vertex has an incident edge, which is not in Q. In this
position, we devote label 3 to each edge in Q and label 1 to an incident
vertex (specially to leaves) and zero to another edges which are not in Q
and the corresponding vertices. These assignments make a commitment
a TRDID function ofM(G) of weight at most 4c. Thence γtrdI(G) ≤ 4c.
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2. There are vertices, such that all their incident edges are in Q.
We devote label 2 to these edges and 1 to their end vertices. Further,
we label 3 to another edges in Q, label 1 to one of incident vertices
(specially to leaves) and zero to another edges which are not in Q and
the corresponding vertices. With the same method of proving the part
2 of Theorem 4.1 since for k ≥ 1, 3k + 1 ≤ 4k, these assignments
grantee a TRDID function of M(G) of weight at most 4c. For seeing
the sharpness, bring up the graph G, constructed from Cm and Pn with
even n, m, where one of the end vertices of Pn make adjacent to one
vertex of Cm. Then from Propositions 3.1 and 3.5 γtrdI(M(G)) = 4c.
Thus we observe the desired result. �

5. RDID and TRDID of middle of corona of K1 and K2 of
a graph

Now we investigate the RDID and TRDID function of corona of K1

and K2 of a graph.

5.1. Corona of K1.

Theorem 5.1. Let H be a connected graph of order n ≥ 2 with ` leaves
and G = H ◦K1. Then γrdI(M(G)) = 3c(G) + bn+`

2
c.

Proof. For n = 2 it is trivial. Let n ≥ 3 Let V (H) = {v1, v2, · · · , vn}
and V (G) = V (H) ∪ {w1, w2 · · · , wn}. Let ui,j be the vertex in M(G)
corresponding to e = vivj of H in G where 1 ≤ i < j ≤ n and uk,k be
the vertex in M(G) corresponding to edge e = wkvk. So V (M(G)) =
V (G) ∪ {ui,j : 1 ≤ i < j ≤ n} ∪ {uk,k : 1 ≤ k ≤ n}. Since wi is a
leaf in G, this vertex in M(G) is also of degree 1 (a leaf). So under
any RDID function, these vertices are devoted by positive label. It is
manifest, for any i, vertex vi with edges incident to vi form a clique qi of
degree deg(vi) and wi is adjacent to ui,i in M(G) (Figure 10). For any
RDID function f , f(N [vi]) ≥ 2 and if f(vi) ∈ {0, 1}, then f(N [vi]) ≥ 3
and f(wi) ≥ 1. Therefore we can assume that, if f(wi) = 1, then
f(ui,i) = 2 and if f(wi) = 2, then f(ui,i) ≤ 1. Although, in the position
of f(wi) + f(ui,i) = 3, the situation of f(wi) = 1, and f(ui,i) = 2 is
more affordable. So we bring up the following mode.

Let f(wi) = 1 and f(ui,i) = 2. Then f(N [vi] − {ui,i}) ≥ 1, and the
restrained of dominating, convince us to assume f(vi) ≥ 1, whenever
deg(vi) = 2 and f(N [vi]) + f(wi) ≥ 4. Since H has ` leaves, the graph
G has ` vertex vi of degree 2 and NM(G)[vi] induces a subgraph K3 in
M(G) where degM(G)(vi) = 2. Since the graph H is connected and n ≥
3, for other vjs every clique has a common vertex with at least one other
clique in M(G). If we devote value 1 to the common vertex between
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two cliques, then γrdI(M(G)) ≥ 3c(G) + `+ dn−`
2
e = 3c(G) + dn+`

2
e.

On the other hand, suppose that q1, q2, · · · , qk are cliques of order at
least 4 in M(G) where there is a common vertex xi,i+1 between qi and
qi+1. For even k, devoting 1 to wi, and x2j−1,2j (1 ≤ j ≤ k

2
), 2 to ui,i,

and zero otherwise, and for odd k, devoting 1 to wi, and x2j−1,2j (1 ≤
j ≤ k−1

2
), and xk−1,k, 2 to ui,i, and zero otherwise, represent an RDID

function of size 3c(G) + dn+`
2
e. Thence γrdI(M(G)) ≤ 3c(G) + dn+`

2
e.

Therefore we have the proof. �

For example see the Figure 10, the graph M(P8 ◦K1) with its RDID
function and RDID number.

Theorem 5.2. Let H be a connected graph of order n ≥ 3 with ` leaves
and G = H ◦K1. Then γtrdI(M(G)) = γrdI(M(G)) = 3c(G) + bn+`

2
c.

Proof. From the symbolization in Theorem 5.1, any vertex with positive
value in clique is adjacent to ui,i (Figure 10). Therefore the γrdI func-
tion of M(G) is a γtrdI function of M(G). The proof is observed. �

00 00 00

11111111

222222

101010101

22

Figure 10. (Total) restrained double Italian domina-
tion of M(P8 ◦K1).

Now we investigate the RDID and TRDID function of corona K2 of
a graph.

5.2. Corona of K2.

Theorem 5.3. Let H be a graph of order n. Let G be a corona K2 of
H, that is G = H ◦K2. Then γrdI(M(G)) = 5n.

Proof. Let V (H) = {v1, v2, · · · , vn} and the set of vertices of G be
V (G) = V (H) ∪ {x1, y1, x2, y2, · · · , xn, yn} where xi, yi are the vertices
of corona K2 corresponding to vertex vi. Let ui,j be the vertex in M(G)
corresponding to e = vivj where 1 ≤ i < j ≤ n and zk,k, xk,k and yk,k
be the vertices in M(G) corresponding to edges e = xkyk, e = xkvk
and e = ykvk respectively. So V (M(G)) = V (G) ∪ {ui,j : 1 ≤ i < j ≤
n} ∪ {zk,k, xk,k, yk,k : 1 ≤ k ≤ n}.

Let f be an RDID function on M(G). Then f(vk) + f(xk) + f(yk) +
f(xk,k) + f(yk,k) + f(zk,k) ≥ 5, because theses vertices induce a middle
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graph of K3 (M(K3)). Since there are n such independent subgraphs
in M(G), then w(f) ≥ 5n and so γrdI(M(G)) ≥ 5n.

On the other hand, it is manifest, devoting label 3 to the vertex zi,i,
label 2 to vi and label 0 otherwise grantee γrdI(M(G)) ≤ 5n), (Figure
11). Therefore γrdI(M(G)) = 5n. �

For example see Figure 11, the graph M(C4◦K2) with RDID function
and RDID number.
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Figure 11. Restrained double Italian domination of
M(C4 ◦K2)

As a prompt result from Theorem 5.3 and considering that for the
given graph G in Theorem 5.3, the edge cover number c is at least
n+ dn

2
e, we have.

Corollary 5.4. Let H be a graph of order n and G = H ◦K2. Then

γrdI(M(G)) ≤ 10c(G)
3

. This bound is sharp for H ∈ {Cn, Pn} with even
n.

Theorem 5.5. Let H be a graph of order n and G = H ◦ K2. Then
γtrdI(M(G)) = 6n.

Proof. From the symbolization in Theorem 5.3, let f be a TRDID func-
tion on M(G). Then f(vk)+f(xk)+f(yk)+f(xk,k)+f(yk,k)+f(zk,k) ≥
6, because these vertices induce a middle graph of K3 (M(K3)). Since
there are n such independent subgraphs in M(G), then w(f) ≥ 6n and
thus γtrdI(M(G)) ≥ 6n.

On the other hand, it is apparent, devoting label 3 to the vertex
xi,i and yi,i, label 0 otherwise, grantee γtrdI(M(G)) ≤ 6n) (Figure 12).
Therefore γtrdI(M(G)) = 6n. �

For example see Figure 12, the graph M(P9 ◦ K2) with its TRDID
function and TRDID number.
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Figure 12. Total restrained double Italian domination
of M(P9 ◦K2)

As a prompt result from Theorem 5.5 and considering that for the
given graph G in Theorem 5.5, the edge cover number c is at least
n+ dn

2
e we have.

Corollary 5.6. Let H be a graph of order n and G = H ◦K2. Then
γtrdI(M(G)) ≤ 4c. This bound is sharp for H ∈ {Cn, Pn} with even n.

6. Conclusion and problems

In this manuscript, we perusal double Italian domination of middle
of any graph. We perused RID and TRID on some custom graph, and
established bounds on the γrdI and γtrdI of Middle of any graph. Also
RDID and TRDID of middle of corona of K1 and K2 of a graph have
been investigated.
There are several construction of graphs for instance Kneser graphs
and Mycielski graphs for which the double Italian domination on them
have not studied yet. Characterization of graphs G for which to achieve
the bounds of Middle of a graph stated in Theorems 4.1 and 4.2 are
problems. The RID and TRID function of corona of two graphs can
be also attended as problems.
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