Journal of Algebra and Related Topics Vol. 12, No 1, (2024), pp 127-136

ON THE CD-FILTRATION OF MODULES WITH RESPECT TO A SYSTEM OF IDEALS

S. O. FARAMARZI * AND H. VALADBEIGI

ABSTRACT. In this paper, we introduce the concept of the cohomological dimension filtration with respect to a system of ideals. In particular, a characterization of cohomological dimension filtration of a module by the associated prime ideals of its factors is established. As a main result, we provide a necessary and sufficient condition for an ascending chain of submodules of an \Re -module M to be the cd-filtration of M, with respect to a system of ideals.

1. INTRODUCTION AND PRELIMINARIES

Throughout this paper, let R denotes a commutative Noetherian (non-zero identity) ring and Φ is a system of ideals of \mathfrak{R} . In [3] a non-empty set of ideals Φ of R is said to be a system of ideals, if whenever $\mathfrak{a}, \mathfrak{b} \in \Phi$, then there is an ideal $\mathfrak{c} \in \Phi$ such that $\mathfrak{c} \subseteq \mathfrak{ab}$. For every R-module B, we have

$$\Gamma_{\Phi}(B) = \{ x \in B \mid \mathfrak{a} x = 0 \text{ for some } \mathfrak{a} \in \Phi \}.$$

Thus, $\Gamma_{\Phi}(B)$ is a Φ -torsion submodule of B. The *i*-th right derived functor of the functor Γ_{Φ} is denoted by H^i_{Φ} . It is clear that when $\Phi = \{\mathfrak{a}^n | n \in \mathbb{N}\}$, the functor H^i_{Φ} coincides with the ordinary local cohomology functor $H^i_{\mathfrak{a}}$. Bijan-Zadeh in [3, Proposition 2.3] showed that:

$$H^i_{\Phi}(M) \cong \lim_{\substack{\to \\ a \in \Phi}} \operatorname{Ext}^i_{\mathcal{R}}(\mathfrak{R}/\mathfrak{a}, \mathcal{M}) \text{ for all } i \ge 0.$$

MSC(2010): Primary: 65F05; Secondary: 46L05, 11Y50

Keywords: Associated primes, cd-filtration, Cohomological dimension, system of ideals. Received: 27 April 2023, Accepted: 15 January 2024.

^{*}Corresponding author: Seadat Ollah Faramarzi.

He also in [2, Lemma 2.1] proved that:

$$H^i_{\Phi}(M) \cong \lim_{\substack{\longrightarrow \\ \mathfrak{a} \in \Phi}} H^i_{\mathfrak{a}}(M), \text{ for all } i \ge 0.$$

One of the main topics in commutative algebra is the study of module properties using the concept of *dimension filtration*, which is introduced by P. Schenzel in [5]. Atazadeh and et al [1], generalize Schenzel's results to *cohomological dimension filtration* (abbreviated as cd-filtration) with respect to an ideal. In this paper, we generalize the above results and introduce the concept of the cohomological dimension filtration with respect to the system of ideals Φ of R. In this regard, We shall establish the following theorems:

Theorem 1.1. Let R be a Noetherian ring, Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := cd(\Phi, M)$ and let $\mathcal{M} = \{M_i\}_{i=0}^c$ be the cd-filtration of M. Then for all integers $0 \leq i \leq cd(\Phi, M)$, we have

$$M_i = H^0_{\Phi_i}(M) = \bigcap_{\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > i} N_j.$$

Theorem 1.2. Let R be a Noetherian ring, Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := cd(\Phi, M)$ with respect to Φ and let $\mathcal{M} = \{M_i\}_{i=0}^c$ be the cohomological dimension filtration of M. Then for all integers $0 \le i \le c$, (i)Ass_{\mathfrak{M}} $M_i = \Omega_i = \{\mathfrak{p} \in Ass_{\mathfrak{M}}M | cd(\Phi, \mathfrak{R}/\mathfrak{p}) \le i\},$

(i) $\operatorname{Ass}_{\mathfrak{R}} M_i = \Omega_i = \{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathcal{H}/\mathfrak{p}) \leq i\},\$ (ii) $\operatorname{Ass}_{\mathfrak{R}} (M/M_i) = \operatorname{Ass}_{\mathfrak{R}} M \setminus \Omega_i = \{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) > i\},\$ (iii) $\operatorname{Ass}_{\mathfrak{R}} M_i/M_{i-1} = \Omega_i \setminus \Omega_{i-1} = \{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i\}.$

Finally as a main result of section 2, we provide a necessary and sufficient condition for an ascending chain of submodules of M to be a cd-filtration of M, with respect to the system of ideals Φ of R.

Theorem 1.3. Let $\mathcal{M} = \{M_i\}_{i=0}^c$ be a filtration of the finite *R*-module M and $\operatorname{cd}(\Phi, M_0) = 0$. The following conditions are equivalent: (i) $\operatorname{Ass}_{\mathfrak{R}}(M_i/M_{i-1}) = \operatorname{Ass}^i_{\mathfrak{R}}(M)$, for all $1 \leq i \leq c$. (ii) \mathcal{M} is the cd-filtration of M with respect to Φ .

For any system of ideals Φ of R, we denote $\Omega := \bigcup_{\mathfrak{a} \in \Phi} V(\mathfrak{a})$, where $V(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Spec} \mathfrak{R} : \mathfrak{p} \supseteq \mathfrak{a}\}$ and the set $\{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M \mid \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i\}$, denote by $\operatorname{Ass}_{R}^{i}(M)$ for any $0 \leq i \leq c$. Also, for any ideal \mathfrak{a} of R, the radical of \mathfrak{a} , denoted by $\operatorname{Rad}(\mathfrak{a})$, is defined to be the set $\{x \in \mathfrak{R} : x^{n} \in \mathfrak{a} \text{ for some } n \in \mathbb{N}\}$.

ON THE CD-FILTRATION ...

2. Cohomological dimension filtration, with respect to a system of ideals

In this section, we introduce the concept of cohomological dimension filtration (briefly as cd-filtration) of a finite R-module M, with respect to the system of ideals Φ of R. Also, we determine the factors of this filtration by a reduced primary decomposition of the zero submodule in M. Next, we determine the associated prime ideals of factors of the cd-filtration of M. Finally, a necessary and sufficient condition for a filtration to be the cd-filtration of a module is provided.

Definition 2.1. Let M be an R-module and Φ be a system of ideals of R. We denote the cohomological dimension of M with respect to Φ by $cd(\Phi, M)$ and define it as

$$\operatorname{cd}(\Phi, M) := \sup\{i \in \mathbb{N}_0 | H^i_{\Phi}(M) \neq 0\},\$$

if this supremum exists, otherwise, we define it as $-\infty$.

Remark 2.2. By [3, Proposition 2.3], there is an isomorphism

$$H^i_{\Phi}(M) \cong \lim_{\substack{\longrightarrow \\ \mathfrak{b} \in \Phi}} H^i_{\mathfrak{b}}(M), \text{ for all } i \ge 0.$$

Hence, it is easy to see that $cd(\Phi, M) \leq sup\{cd(\mathfrak{b}, M) | \mathfrak{b} \in \Phi\}$, and $cd(\Phi, M) \leq \dim M$. We denote $cd(\Phi, \mathfrak{R})$ by $cd\Phi$, therefore $cd\Phi \leq sup\{cd\mathfrak{b} \mid \mathfrak{b} \in \Phi\}$.

Definition 2.3. Let M be a finitely generated R-module and Φ be a system of ideals of R. The increasing filtration $\mathcal{M} = \{M_j\}_{j=0}^c$ of submodules of M, when $c := \operatorname{cd}(\Phi, M)$ is called the *cohomological dimension filtration* of M with respect to Φ . Here M_j is the largest submodule of M such that $\operatorname{cd}(\Phi, M_j) \leq j$ for any integer $0 \leq j \leq c$.

Lemma 2.4. Let R be a Noetherian ring and Φ be a system of ideals of R. Let M and N be two finitely generated R-modules such that $\operatorname{Supp} N \subseteq \operatorname{Supp} M$. Then $\operatorname{cd}(\Phi, N) \leq \operatorname{cd}(\Phi, M)$.

Proof. It will be enough to show that $H^i_{\Phi}(N) = 0$ for all integers i with $\operatorname{cd}(\Phi, M) < i \leq \dim M + 1$. We argue this by a descending induction on i.

The assertion is clear for $i = \dim M + 1$ by Grothendieck Vanishing Theorem [4, Theorem 6.1.2]. Suppose $i \leq \dim M$. By the assumption RadAnn_{\Re}(N) \supseteq Ann_{\Re}(M), we define $\mathfrak{c} := \operatorname{Ann}_{\Re}(M)$ for the rest. Hence there exists $n \in \mathbb{N}$ such that $\mathfrak{c}^n N = 0$. Thus N possesses a filtration

$$0 = \mathfrak{c}^n N \subset \mathfrak{c}^{n-1} N \subset \cdots \subset \mathfrak{c} N \subset N,$$

such that $\mathfrak{c}^{i-1}N/\mathfrak{c}^i N$, is a finitely generated $\mathfrak{R}/\mathfrak{c}$ -module for every $i = 1, \ldots, n$.

By Gruson's theorem (see [7, Theorem 4.1]) a finitely generated \Re/\mathfrak{c} -module T admits a filtration

$$0 = T_0 \subset T_1 \subset \cdots \subset T_k = T,$$

such that T_j/T_{j-1} , is a homomorphic image of a direct sum of finitely many copies of M for all $j = 1, \ldots, k$.

Now, we will prove the vanishing of $H^i_{\Phi}(T)$. By using short exact sequences and induction on k, it suffices to prove the case when k = 1. Thus, there is an exact sequence

$$0 \longrightarrow K \longrightarrow M^t \longrightarrow T \longrightarrow 0$$

for some positive integer t. It induces an exact sequence

$$\cdots \to H^i_{\Phi}(K) \to H^i_{\Phi}(M)^t \to H^i_{\Phi}(T) \to H^{i+1}_{\Phi}(K) \to \cdots$$

By the inductive hypothesis $H^{i+1}_{\Phi}(K) = 0$, so that $H^{i}_{\Phi}(T) = 0$. Finally, we will prove that $H^{i}_{\Phi}(N) = 0$. Using short exact sequences and induction on n, it suffices to prove the case when n = 1, which is obviously true as a consequence of the previous argument. \Box

Lemma 2.5. Let $0 \to L \to M \to N \to 0$ be an exact sequence of finitely generated *R*-modules. Then

$$cd(\Phi, M) = \max\{cd(\Phi, L), cd(\Phi, N)\}.$$

Proof. By Lemma 2.4 we have $cd(\Phi, N) \leq cd(\Phi, M)$ and $cd(\Phi, L) \leq cd(\Phi, M)$. Thus

 $\max\{\operatorname{cd}(\Phi, L), \operatorname{cd}(\Phi, N)\} \le \operatorname{cd}(\Phi, M).$

From the long exact sequence:

$$\cdots \to H^i_{\Phi}(L) \to H^i_{\Phi}(M) \to H^i_{\Phi}(N) \to H^{i+1}_{\Phi}(L) \to \cdots,$$

we deduce $cd(\Phi, M) \leq max\{cd(\Phi, L), cd(\Phi, N)\}$, as required.

In the next corollary, it will be shown that the cohomological dimension of a finitely generated R-module M can be determined by the cohomological dimension of its minimal associated prime ideals.

Corollary 2.6. Let M be a finitely generated R-module. Then $cd(\Phi, M) = cd(\Phi, \Re/Ann_{\Re}(M)) = max\{cd(\Phi, \frac{\Re}{\mathfrak{p}}) | \mathfrak{p} \in \mathfrak{minSupp}_{\Re}(M)\}.$

131

Proof. The first equality is clear, because of $V(\operatorname{Ann}_{\mathfrak{R}} M) = \operatorname{Supp}_{\mathfrak{R}} M$ and Lemma 2.4. For the proof of the second, define $N := \bigoplus_{\mathfrak{p} \in \min \operatorname{Supp}_{\mathfrak{R}}(M)} (\frac{\mathfrak{R}}{\mathfrak{p}})$. Then it follows that

$$\operatorname{cd}(\Phi, N) = \max\{\operatorname{cd}(\Phi, \frac{\mathfrak{R}}{\mathfrak{p}}) : \mathfrak{p} \in \mathfrak{minSupp}_{\mathfrak{R}}(M)\}.$$

Remember that the local cohomology commutes with direct sums. Furthermore we have SuppM = SuppN. So the statement is a consequence of Lemma 2.4.

Remark 2.7. There is another definition of system of ideals, [4, Definition 2.1.10] which obviously coincides with our definition. Let (I, \preceq) be a (non-empty) directed partially ordered set. A system of ideals of R over I is a family $\Phi = {\mathfrak{a}_i}_{i \in I}$ of ideals of R satisfying the following conditions:

1) if $i, j \in I$ with $j \leq i$, then $\mathfrak{a}_i \subseteq \mathfrak{a}_j$ and

2) for all $i, j \in I$, there exists $k \in I$ such that $k \succeq i, k \succeq j$ and $\mathfrak{a}_k \subseteq \mathfrak{a}_i \mathfrak{a}_j$.

Remark 2.8. Let R be a Noetherian ring and M be a finitely generated R-module, the set $\Phi_i = {\mathfrak{a}_j | 0 \le j \le i}$ be a system of ideals of R where $\mathfrak{a}_j := \prod_{\mathrm{cd}(\Phi, R/\mathfrak{p}) \le j, \mathfrak{p} \in \mathrm{Ass}M} \mathfrak{p}$. Obviously, we have a descending chain of ideals

$$\mathfrak{a}_0 \supseteq \mathfrak{a}_1 \supseteq \cdots \supseteq \mathfrak{a}_c$$

and so for two ideals $\mathfrak{a}_k, \mathfrak{a}_j$ where $0 \leq j, k \leq i$ there exists an ideal \mathfrak{a}_l such that $\mathfrak{a}_l \subseteq \mathfrak{a}_j \mathfrak{a}_k$ when $l := \max\{j, k\}$.

We recall that $Ass_R^i(M) = \{ \mathfrak{p} \in Ass_{\mathfrak{R}}M | cd(\Phi, \mathfrak{R}/\mathfrak{p}) = i \}$, for any $0 \leq i \leq c$ and $\Omega_i := \bigcup_{I \in \Phi_i} V(I)$.

Proposition 2.9. Let R be a Noetherian ring, Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := cd(\Phi, M)$ and let $\mathcal{M} = \{M_i\}_{i=0}^c$ be the cd-filtration of M, with respect to Φ . Then for all integers $0 \le i \le c$, we have

$$M_i = H^0_{\Phi_i}(M) = \bigcap_{\operatorname{cd}(\Phi, R/p_j) > i} N_j.$$

Here $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of the zero submodule in M and N_j is a \mathfrak{p}_j -primary submodule of M.

Proof. First, we show the equality $H^0_{\Phi_i}(M) = \bigcap_{\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > i} N_j$. Suppose that $x \in \bigcap_{\operatorname{cd}(\Phi, R/\mathfrak{p}_j) > i} N_j$ since N_j is a \mathfrak{p}_j -primary submodule of M, there is an integer s_j such that $\mathfrak{p}_j^{s_j}M \subseteq N_j$. Now let $s := \max\{s_j | 1 \leq j \leq n\}$, thus for all $1 \leq j \leq n$, we have $\mathfrak{p}_j^s M \subseteq N_j$. Since $x \in M$,

then $\mathfrak{p}_j{}^s x \subseteq N_j$, for all $1 \leq j \leq n$. Also for any $I \in \Phi_i$, we have $I^s x \subseteq \mathfrak{a}_0{}^s x \subseteq N_j$, for all $0 \leq j \leq n$, thus, $I^s x \subseteq \bigcap_{j=1}^n N_j = 0$. Therefore by Remark 2.8, $x \in H^0_{\Phi_i}(M)$.

In order to prove the reverse, assume the contrary holds. Then there exists $x \in H^0_{\Phi_i}(M)$ such that $x \notin \bigcap_{\mathrm{cd}(\Phi, R/\mathfrak{p}_j) > i} N_j$. Hence there is an integer t such that $x \notin N_t$ and $\mathrm{cd}(\Phi, R/\mathfrak{p}_t) > i$. Now since $x \in H^0_{\Phi_i}(M)$, there exists an ideal $\mathfrak{b} \in \Phi_i$ such that $x\mathfrak{b} = 0$. Because of $x \notin N_t$ and N_t is a \mathfrak{p}_t -primary submodule, $\mathfrak{b} \subseteq \mathfrak{p}_t$. Thus there is an integer j such that $\mathfrak{p}_j \subseteq \mathfrak{p}_t$ and $\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) \leq i$. Therefore, by virtue of Lemma 2.4, we get $\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_t) \leq \mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) \leq i$, which is a contradiction. Now we want to show that $M_i = H^0_i(M)$. Suppose that $x \in M_i$

Now we want to show that $M_i = H^0_{\Phi_i}(M)$. Suppose that $x \in M_i$. Then, by using Lemma 2.4, $\operatorname{cd}(\Phi, \Re x) \leq i$. Now, let \mathfrak{p} be an arbitrary minimal prime ideal over $\operatorname{Ann}_{\Re}(\Re x)$. Thus, by using Lemma 2.4, we gain that $\operatorname{cd}(\Phi, \Re/\mathfrak{p}) \leq i$. On the other hand, since $\mathfrak{p} \in \operatorname{Ass}_{\Re}(\Re x)$, clearly $\mathfrak{p} \in \operatorname{Ass}_{\Re}(M)$, and so there is $1 \leq j \leq n$ such that $\mathfrak{p}_j = \mathfrak{p}$. Accordingly, there exsists $\mathfrak{b} \in \Phi_i$ such that $\mathfrak{b} \subseteq \mathfrak{p}$ and then

$$(\prod_{\mathfrak{b}\in\Phi_i}\mathfrak{b})\subseteq (\bigcap_{\mathfrak{b}\in\Phi_i}\mathfrak{b})\subseteq (\bigcap_{\mathfrak{p}\in\mathfrak{minAss}(\mathfrak{R}x)}\mathfrak{p}).$$

Since Φ_i is a system of ideals, thus there exists $\mathfrak{c} \in \Phi_i$ such that

$$\mathfrak{c} \subseteq (\bigcap_{\mathfrak{p} \in \mathfrak{minAss}(\mathfrak{R}x)} \mathfrak{p}) = \sqrt{(0:\mathfrak{R}x)}.$$

Therefore, there exists an integer n such that $\mathfrak{c}^n x = 0$. On the other hand, by Remark 2.8, we have $x \in H^0_{\Phi_i}(M)$ thus $M_i \subseteq H^0_{\Phi_i}(M)$. To prove the reverse inclusion, let $\mathfrak{p} \in \operatorname{Supp} H^0_{\Phi_i}(M)$, then there exists an ideal $I \in \Phi_i$ such that $\mathfrak{p} \in V(I)$, since $\operatorname{Supp} H^0_{\Phi_i}(M) \subseteq \Omega_i$. Hence, there is a prime ideal $\mathfrak{q} \in \operatorname{Ass} M$ such that $\mathfrak{q} \subseteq \mathfrak{p}$ and $\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{q}) \leq i$. Using Lemma 2.4, we see that $\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) \leq i$. Therefore, by Corollary 2.6, we have $\operatorname{cd}(\Phi, H^0_{\Phi_i}(M)) \leq i$. Thus, by the maximality of M_i , clearly $M_i \subseteq H^0_{\Phi_i}(M)$. \Box

Definition 2.10. Let R be a Noetherian ring, Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := \operatorname{cd}(\Phi, M)$. We denote $T_{\mathfrak{R}}(\Phi, M)$ as the largest submodule of M such that $\operatorname{cd}(\Phi, T_{\mathfrak{R}}(\Phi, M)) < c$. In view of Lemma 2.4, one can easily see that

$$T_{\mathfrak{R}}(\Phi, M) = \bigcup \{ N \le M | \operatorname{cd}(\Phi, N) < c \}.$$

Remark 2.11. Let R be a Noetherian ring, Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := cd(\Phi, M)$. Let $\{M_i\}_{i=0}^c$ be a cd-filtration of M with respect to Φ . Then $T_{\mathfrak{R}}(\Phi, M) = M_{c-1}$ and by Proposition 2.9, we have

$$T_{\mathfrak{R}}(\Phi, M) = H^0_{\Phi_{c-1}}(M) = \bigcap_{\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j)=c} N_j,$$

where $0 = \bigcap_{j=1}^{n} N_j$ denotes a reduced primary decomposition of the zero submodule 0 in M and N_j is a \mathfrak{p}_j -primary submodule of M.

In the next proposition, we investigate some properties of associated primes of cohomological dimension filtration of M, with respect to a system of ideals of R.

Proposition 2.12. Let R be a Noetherian ring, and Φ be a system of ideals of R and M be a non-zero finitely generated R-module with finite cohomological dimension $c := cd(\Phi, M)$. Let $\{M_i\}_{i=0}^c$ be a cd-filtration of M with respect to Φ . Then for all integers $0 \le i \le c$, (i)Ass_{\Re} $M_i = \Omega_i = \{\mathfrak{p} \in Ass_{\Re}M | cd(\Phi, \mathfrak{R}/\mathfrak{p}) \le i\},$ (ii)Ass_{\Re} $(M/M_i) = Ass_{\Re}M \setminus \Omega_i = \{\mathfrak{p} \in Ass_{\Re}M | cd(\Phi, \mathfrak{R}/\mathfrak{p}) > i\},$ (iii)Ass_{\Re} $M_i/M_{i-1} = \Omega_i \setminus \Omega_{i-1} = \{\mathfrak{p} \in Ass_{\Re}M | cd(\Phi, \mathfrak{R}/\mathfrak{p}) = i\}.$

Proof. By Proposition 2.9, $M_i = H^0_{\Phi_i}(M)$. Also by [6, Lemma 2.2], we get

$$\operatorname{Ass}_{\mathfrak{R}} M_i = \operatorname{Ass}_{\mathfrak{R}} M \cap \Omega_i.$$

Now (i), obtain easily from Lemma 2.4.

Using [4, Exercise 2.1.14] (ii) holds. To show (iii), as $M_i/M_{i-1} \subseteq M/M_{i-1}$, so $\operatorname{Ass}_{\mathfrak{R}}M_i/M_{i-1} \subseteq \operatorname{Ass}_{\mathfrak{R}}M/M_{i-1}$, and it follows from part (ii) that $\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) \geq i$, for all $\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}}M_i/M_{i-1}$. Moreover, with the short exact sequence

$$0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow M_i/M_{i-1} \longrightarrow 0,$$

and Lemma 2.4, we have

$$\operatorname{cd}(\Phi, M_i/M_{i-1}) \le \operatorname{cd}(\Phi, M_i) \le i.$$

Again Lemma 2.4, shows that $cd(\Phi, \mathfrak{R}/\mathfrak{p}) \leq i$, for all $\mathfrak{p} \in Ass_{\mathfrak{R}}M_i/M_{i-1}$. Hence

$$\operatorname{Ass}_{\mathfrak{R}} M_i/M_{i-1} \subseteq \{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i\}.$$

Now, let $\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M$ and $\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i$. By virtue of part (i), $\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M_i$, and $\mathfrak{p} \notin \operatorname{Ass}_{\mathfrak{R}} M_{i-1}$. Now the exact sequence,

 $0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow M_i/M_{i-1} \longrightarrow 0,$

yields $\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M_i / M_{i-1}$. Thus

$$\operatorname{Ass}_{\mathfrak{R}} M_i/M_{i-1} = \{ p \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i \}.$$

Remark 2.13. Let $\mathcal{M} = \{M_i\}_{i=0}^c$ be the cd-filtration of M, with respect to Φ where $c = cd(\Phi, M)$. Considering the exact sequence

$$0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow M_i/M_{i-1} \longrightarrow 0,$$

in view of Lemma 2.5 and Proposition 2.12, we have $cd(\Phi, M_i) = cd(\Phi, M_i/M_{i-1})$ for all $1 \le i \le c$.

One of the main aims of this section is to establish the following theorem, which gives a characterization of the cd-filtration of M with respect to Φ , in terms of associated prime ideals of its factors. Recall that, $\operatorname{Ass}^{i}_{R}(M) = \{\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}} M | \operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i\}$, for all $i \geq 0$.

Theorem 2.14. Let $\mathcal{M} = \{M_i\}_{i=0}^c$ be a filtration of the finite *R*-module M and Φ be a system of ideals of *R* such that $cd(\Phi, M_0) = 0$. The following conditions are equivalent:

(i)Ass_{\mathfrak{R}} $(M_i/M_{i-1}) = Ass^i_{\mathfrak{R}}(M)$, for all $1 \le i \le c$. (ii) \mathcal{M} is the cd-filtration of M with respect to Φ .

Proof. By applying Proposition 2.12 (iii), (ii \Rightarrow i) is clear. Thus it is enough to prove (i \Rightarrow ii). Considering the short exact sequence

 $0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow M_i/M_{i-1} \longrightarrow 0.$

First, we claim that

$$\operatorname{Ass}_{\mathfrak{R}}(M_{i-1}) \cap \operatorname{Ass}_{\mathfrak{R}}(M_i/M_{i-1}) = \emptyset$$
, for all $1 \le i \le c$.

Suppose that, contrarily, for some $1 \leq i \leq c$, then there exists $\mathfrak{p} \in Ass_{\mathfrak{R}}(M_{i-1}) \cap Ass_R(M_i/M_{i-1})$. Therefore, $cd(\Phi, M_{i-1}) \geq i$ by (i). By the assumption, $Ass_{\mathfrak{R}}^{i-1}(M) = Ass_{\mathfrak{R}}(M_{i-1}/M_{i-2})$ so $\mathfrak{p} \notin Ass_{\mathfrak{R}}(M_{i-1}/M_{i-2})$. The short exact sequence

$$0 \longrightarrow M_{i-2} \longrightarrow M_{i-1} \longrightarrow M_{i-1}/M_{i-2} \longrightarrow 0,$$

yields $\mathfrak{p} \in \operatorname{Ass}_{\mathfrak{R}}(M_{i-2})$. As $\operatorname{cd}(\Phi, \mathfrak{R}/\mathfrak{p}) = i$, thus $\operatorname{cd}(\Phi, M_{i-2}) \geq i$. By the continuation of this descending process, we have $\operatorname{cd}(\Phi, M_0) \geq i > 0$, which is a contradiction. Now consider the exact sequence

$$0 \longrightarrow M_{c-1} \longrightarrow M \longrightarrow M/M_{c-1} \longrightarrow 0.$$

Thus, $\operatorname{cd}(\Phi, M_{c-1}) \leq c-1$ as $\operatorname{Ass}_{\Re}(M_{c-1}) \cap \operatorname{Ass}_{\Re}(M/M_{c-1}) = \emptyset$. Now, suppose that the largest submodule of M is denoted by N such that $\operatorname{cd}(\Phi, N) \leq c-1$ and $\mathfrak{p} \in \operatorname{Ass}_{\Re}(N/M_{c-1})$. Because of $\operatorname{Ass}_{\Re}(N/M_{c-1}) \subseteq$ $\operatorname{Ass}_{\Re}^{c}(M)$, we have $\operatorname{cd}(\Phi, \Re/\mathfrak{p}) = c$. But $\mathfrak{p} \in \operatorname{Supp}_{\Re}(N/M_{c-1}) \subseteq$ $\operatorname{Supp}_{\Re}(N)$ and therefore $\operatorname{cd}(\Phi, \Re/\mathfrak{p}) \leq \operatorname{cd}(\Phi, N) \leq c-1$ which is impossible. Hence, $\operatorname{Ass}_{\Re}(N/M_{c-1}) = \emptyset$ and M_{c-1} is the largest submodule of M such that $\operatorname{cd}(\Phi, M_{c-1}) \leq c-1$. Now descendingly, we proceed with this method to prove that \mathcal{M} is the cd-filtration of Mwith respect to Φ . \Box **Corollary 2.15.** Let $\bigcap_{j=1}^{n} N_j$ be a reduced primary decomposition of the zero submodule 0 in M, where N_i is \mathfrak{p}_i -primary. Let Φ be a system of ideals of R and $M_i = \bigcap_{\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > i} N_j$ for all $0 \leq i \leq c = \mathrm{cd}(\Phi, M)$. If $\mathrm{cd}(\Phi, \bigcap_{\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > 0} N_j) = 0$, then $\{M_i\}_{i=0}^c$ is the cd-filtration of M with respect to Φ .

Proof. Let $L_i = \bigcap_{\mathrm{cd}(\Phi,\mathfrak{R}/\mathfrak{p}_j)=i} N_j$ for all $0 \leq i \leq c$. Obviously, $M_{i-1} = M_i \cap L_i$. By rewriting the indices, let $L_i = N_1 \cap ... \cap N_m$. By Theorem 2.14, it is enough to show that $\mathrm{Ass}_{\mathfrak{R}}(M_i/M_{i-1}) = \{\mathfrak{p}_1, ..., \mathfrak{p}_m\}$. We know that $\mathrm{Ass}_{\mathfrak{R}}(M_i/M_{i-1}) = \mathrm{Ass}_{\mathfrak{R}}(M_i + L_i/L_i) \subseteq \mathrm{Ass}_{\mathfrak{R}}(M/L_i)$. Also, $\mathrm{Ass}_{\mathfrak{R}}(M/L_i) = \mathrm{Ass}_{\mathfrak{R}}(\oplus_{j=1}^n M/N_j) = \{\mathfrak{p}_1, ..., \mathfrak{p}_m\}$, and so $\mathrm{Ass}_{\mathfrak{R}}(M_i/M_{i-1}) \subseteq \{\mathfrak{p}_1, ..., \mathfrak{p}_m\}$. By the assumption we have

$$M_{i-1} = \bigcap_{\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > i-1} N_j = L_i \cap L_{i+1} \cap \ldots \cap L_c,$$
$$M_i = \bigcap_{\mathrm{cd}(\Phi, \mathfrak{R}/\mathfrak{p}_j) > i} N_j = L_{i+1} \cap L_{i+2} \cap \ldots \cap L_c.$$

We will show that $\mathfrak{p}_r \in \operatorname{Ass}_{\mathfrak{R}}(M_i/M_{i-1})$ for all $1 \leq r \leq m$. Since $0 = \bigcap_{j=1}^n N_j$ is a reduced primary decomposition of zero submodule, it yields

$$M_{i-1} \subsetneqq (N_1 \cap \ldots \cap \widehat{N_r} \cap \ldots \cap N_m) \cap L_{i+1} \cap \ldots \cap L_c.$$

Let $A := (N_1 \cap ... \cap \widehat{N_r} \cap ... \cap N_m) \cap L_{i+1} \cap ... \cap L_c$. So there exists $x \in A$ such that $x \notin M_{i-1}$.

Consequently, we deduce that $(M_{i-1}:x) = (N_r:x)$. Since N_r is \mathfrak{p}_r primary, there exists t > 0 such that $\mathfrak{p}_r^t M \subseteq N_r$. Hence $\mathfrak{p}_r^t M \subseteq M_{i-1}$.
Suppose that $s \ge 0$ is the least integer such that $\mathfrak{p}_r^{s+1}x \nsubseteq M_{i-1}$ and $\mathfrak{p}_r^s x \nsubseteq M_{i-1}$. This implies that there exists $y \in \mathfrak{p}_r^s x$ such that $y \notin M_{i-1}$.
Now, it is clear to see that $\mathfrak{p}_r = (M_{i-1}:y)$, i.e., $\mathfrak{p}_r \in \operatorname{Ass}_{\mathfrak{R}}(M_i/M_{i-1})$.
This completes the proof.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- A. Atazadeh, M. Sedghi and R. Naghipour, Cohomological dimension filtration and annihilators of top local cohomology modules, Colloq. Math. 139 (2015), 25–35.
- M. H. Bijan-Zadeh, A common generalization of local cohomology theories. Glasgow Math. J. 21 (1980), 173–181.
- M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative and Noetherian rings. J. London Math. 19 (1979), 402–410.

FARAMARZI AND VALADBEIGI

- 4. M. P. Brodmann and R. Y. Sharp, *Local cohomology; An algebraic introduction with geometric applications*, Cambridge University Press, Cambridge, 1998.
- P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Commutative algebra and algebraic geometry, Lect. Notes in Pure and Appl. Math. Dekker, New York, 206 (1999), 245–264.
- N. M. Tri, On Artinianess of general of local cohomology modules. Bull. Korean Math, Soc. 58 (2021), 689–698.
- W. Vasconcelos, Divisor Theory in Module Categories, North-Holland, Amsterdam, 1974.

S. O. Faramarzi

Department of Mathematics, Payame Noor University(PNU), Tehran, Iran Email: s.o.faramarzi@pmu.ac.ir; s.o.faramarzi@gmail.com

H. Valadbeigi

Department of Mathematics, Payame Noor University(PNU), Tehran, Iran Email: hadis.valadbeigi@student.pnu.ac.ir; hadis.valadbeigi@gmail.com