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ON THE CD-FILTRATION OF MODULES WITH
RESPECT TO A SYSTEM OF IDEALS

S. O. FARAMARZI ∗ AND H. VALADBEIGI

Abstract. In this paper, we introduce the concept of the coho-
mological dimension filtration with respect to a system of ideals.
In particular, a characterization of cohomological dimension fil-
tration of a module by the associated prime ideals of its factors is
established. As a main result, we provide a necessary and sufficient
condition for an ascending chain of submodules of an R -module
M to be the cd-filtration of M , with respect to a system of ideals.

1. Introduction and preliminaries

Throughout this paper, let R denotes a commutative Noetherian
(non-zero identity) ring and Φ is a system of ideals of R. In [3] a non-
empty set of ideals Φ of R is said to be a system of ideals, if whenever
a, b ∈ Φ, then there is an ideal c ∈ Φ such that c ⊆ ab. For every
R-module B, we have

ΓΦ(B) = {x ∈ B | ax = 0 for some a ∈ Φ}.
Thus, ΓΦ(B) is a Φ-torsion submodule of B. The i-th right derived
functor of the functor ΓΦ is denoted by H i

Φ. It is clear that when
Φ = {an|n ∈ N}, the functor H i

Φ coincides with the ordinary local
cohomology functor H i

a. Bijan-Zadeh in [3, Proposition 2.3] showed
that:

H i
Φ(M)∼= lim→

a∈Φ

Exti
R(R/a,M) for all i ≥ 0.
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He also in [2, Lemma 2.1] proved that:

H i
Φ(M)∼= lim→

a∈Φ

H i
a(M), for all i ≥ 0.

One of the main topics in commutative algebra is the study of module
properties using the concept of dimension filtration, which is intro-
duced by P. Schenzel in [5]. Atazadeh and et al [1], generalize Schen-
zel’s results to cohomological dimension filtration (abbreviated as
cd-filtration) with respect to an ideal. In this paper, we generalize the
above results and introduce the concept of the cohomological dimension
filtration with respect to the system of ideals Φ of R. In this regard,
We shall establish the following theorems:

Theorem 1.1. Let R be a Noetherian ring, Φ be a system of ideals
of R and M be a non-zero finitely generated R-module with finite co-
homological dimension c := cd(Φ,M) and let M = {Mi}ci=0 be the
cd-filtration of M . Then for all integers 0 ≤ i ≤ cd(Φ,M), we have

Mi = H0
Φi

(M) =
⋂

cd(Φ,R/pj)>i

Nj.

Theorem 1.2. Let R be a Noetherian ring, Φ be a system of ideals of
R and M be a non-zero finitely generated R-module with finite cohomo-
logical dimension c := cd(Φ,M) with respect to Φ and letM = {Mi}ci=0

be the cohomological dimension filtration of M . Then for all inte-
gers 0 ≤ i ≤ c,
(i)AssRMi = Ωi = {p ∈ AssRM |cd(Φ,R/p) ≤ i},
(ii)AssR(M/Mi) = AssRM \ Ωi = {p ∈ AssRM |cd(Φ,R/p) > i},
(iii)AssRMi/Mi−1 = Ωi \ Ωi−1 = {p ∈ AssRM |cd(Φ,R/p) = i}.

Finally as a main result of section 2, we provide a necessary and
sufficient condition for an ascending chain of submodules of M to be a
cd-filtration of M , with respect to the system of ideals Φ of R.

Theorem 1.3. Let M = {Mi}ci=0 be a filtration of the finite R-module
M and cd(Φ,M0) = 0. The following conditions are equivalent:
(i)AssR(Mi/Mi−1) = AssiR(M), for all 1 ≤ i ≤ c.
(ii)M is the cd-filtration of M with respect to Φ.

For any system of ideals Φ of R, we denote Ω := ∪a∈ΦV (a), where
V (a) = {p ∈ SpecR : p ⊇ a} and the set {p ∈ AssRM | cd(Φ,R/p) =
i}, denote by AssiR(M) for any 0 ≤ i ≤ c. Also, for any ideal a of R,
the radical of a, denoted by Rad(a), is defined to be the set {x ∈ R :
xn ∈ a for some n ∈ N}.
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2. Cohomological dimension filtration, with
respect to a system of ideals

In this section, we introduce the concept of cohomological dimension
filtration (briefly as cd-filtration) of a finite R-module M , with respect
to the system of ideals Φ of R. Also, we determine the factors of this
filtration by a reduced primary decomposition of the zero submodule
in M . Next, we determine the associated prime ideals of factors of the
cd-filtration of M . Finally, a necessary and sufficient condition for a
filtration to be the cd-filtration of a module is provided.

Definition 2.1. Let M be an R-module and Φ be a system of ideals
of R. We denote the cohomological dimension of M with respect to Φ
by cd(Φ,M) and define it as

cd(Φ,M) := sup{i ∈ N0|H i
Φ(M) 6= 0},

if this supremum exists, otherwise, we define it as -∞.

Remark 2.2. By [3, Proposition 2.3], there is an isomorphism

H i
Φ(M)∼= lim→

b∈Φ

H i
b(M), for all i ≥ 0.

Hence, it is easy to see that cd(Φ,M) ≤ sup{cd(b,M)|b ∈ Φ}, and
cd(Φ,M) ≤ dimM. We denote cd(Φ,R) by cdΦ, therefore cdΦ ≤
sup{cdb | b ∈ Φ}.

Definition 2.3. Let M be a finitely generated R-module and Φ be
a system of ideals of R. The increasing filtration M = {Mj}cj=0 of
submodules of M , when c := cd(Φ,M) is called the cohomological
dimension filtration of M with respect to Φ. Here Mj is the largest
submodule of M such that cd(Φ,Mj) ≤ j for any integer 0 ≤ j ≤ c.

Lemma 2.4. Let R be a Noetherian ring and Φ be a system of ideals
of R. Let M and N be two finitely generated R-modules such that
SuppN ⊆ SuppM . Then cd(Φ, N) ≤ cd(Φ,M).

Proof. It will be enough to show that H i
Φ(N) = 0 for all integers i with

cd(Φ,M) < i ≤ dimM + 1. We argue this by a descending induction
on i.
The assertion is clear for i = dimM + 1 by Grothendieck Vanishing
Theorem [4, Theorem 6.1.2]. Suppose i ≤ dimM. By the assump-
tion RadAnnR(N) ⊇ AnnR(M), we define c := AnnR(M) for the rest.
Hence there exists n ∈ N such that cnN = 0. Thus N possesses a
filtration

0 = cnN ⊂ cn−1N ⊂ · · · ⊂ cN ⊂ N,



130 FARAMARZI AND VALADBEIGI

such that ci−1N/ciN, is a finitely generated R/c-module for every i =
1, . . . , n.
By Gruson’s theorem (see [7, Theorem 4.1]) a finitely generated R/c
-module T admits a filtration

0 = T0 ⊂ T1 ⊂ · · · ⊂ Tk = T,

such that Tj/Tj−1, is a homomorphic image of a direct sum of finitely
many copies of M for all j = 1, . . . , k.
Now, we will prove the vanishing of H i

Φ(T ). By using short exact se-
quences and induction on k, it suffices to prove the case when k = 1.
Thus, there is an exact sequence

0 −→ K −→M t −→ T −→ 0

for some positive integer t. It induces an exact sequence

· · · → H i
Φ(K)→ H i

Φ(M)t → H i
Φ(T )→ H i+1

Φ (K)→ · · · .

By the inductive hypothesis H i+1
Φ (K) = 0, so that H i

Φ(T ) = 0.
Finally, we will prove that H i

Φ(N) = 0. Using short exact sequences
and induction on n, it suffices to prove the case when n = 1, which is
obviously true as a consequence of the previous argument. �

Lemma 2.5. Let 0 → L → M → N → 0 be an exact sequence of
finitely generated R-modules. Then

cd(Φ,M) = max{cd(Φ, L), cd(Φ, N)}.

Proof. By Lemma 2.4 we have cd(Φ, N) ≤ cd(Φ,M) and cd(Φ, L) ≤
cd(Φ,M). Thus

max{cd(Φ, L), cd(Φ, N)} ≤ cd(Φ,M).

From the long exact sequence:

· · · → H i
Φ(L)→ H i

Φ(M)→ H i
Φ(N)→ H i+1

Φ (L)→ · · · ,

we deduce cd(Φ,M) ≤ max{cd(Φ, L), cd(Φ, N)}, as required.
�

In the next corollary, it will be shown that the cohomological di-
mension of a finitely generated R-module M can be determined by the
cohomological dimension of its minimal associated prime ideals.

Corollary 2.6. Let M be a finitely generated R-module. Then

cd(Φ,M) = cd(Φ,R/AnnR(M)) = max{cd(Φ,
R

p
)|p ∈ minSuppR(M)}.
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Proof. The first equality is clear, because of V(AnnRM) = SuppRM
and Lemma 2.4. For the proof of the second, define N :=

⊕
p∈minSuppR(M)(

R
p
).

Then it follows that

cd(Φ, N) = max{cd(Φ,
R

p
) : p ∈ minSuppR(M)}.

Remember that the local cohomology commutes with direct sums. Fur-
thermore we have SuppM = SuppN . So the statement is a consequence
of Lemma 2.4. �

Remark 2.7. There is another definition of system of ideals, [4, Defi-
nition 2.1.10] which obviously coincides with our definition. Let (I,�)
be a (non-empty) directed partially ordered set. A system of ideals of
R over I is a family Φ = {ai}i∈I of ideals of R satisfying the following
conditions:
1) if i, j ∈ I with j � i, then ai ⊆ aj and
2) for all i, j ∈ I, there exists k ∈ I such that k � i, k � j and
ak ⊆ aiaj.

Remark 2.8. Let R be a Noetherian ring and M be a finitely generated
R-module, the set Φi = {aj| 0 ≤ j ≤ i} be a system of ideals of R where
aj :=

∏
cd(Φ,R/p)≤j,p∈AssM p. Obviously, we have a descending chain of

ideals
a0 ⊇ a1 ⊇ · · · ⊇ ac ,

and so for two ideals ak,aj where 0 ≤ j, k ≤ i there exists an ideal al
such that al ⊆ ajak when l := max{j, k}.

We recall that AssiR(M) = {p ∈ AssRM |cd(Φ,R/p) = i}, for any
0 ≤ i ≤ c and Ωi :=

⋃
I∈Φi

V (I).

Proposition 2.9. Let R be a Noetherian ring, Φ be a system of ideals
of R and M be a non-zero finitely generated R-module with finite co-
homological dimension c := cd(Φ,M) and let M = {Mi}ci=0 be the
cd-filtration of M , with respect to Φ. Then for all integers 0 ≤ i ≤ c,
we have

Mi = H0
Φi

(M) =
⋂

cd(Φ,R/pj)>i

Nj.

Here 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the zero
submodule in M and Nj is a pj-primary submodule of M .

Proof. First, we show the equality H0
Φi

(M) =
⋂

cd(Φ,R/pj)>i Nj. Suppose

that x ∈
⋂

cd(Φ,R/pj)>i Nj since Nj is a pj-primary submodule of M,

there is an integer sj such that pj
sjM ⊆ Nj. Now let s := max{sj|1 ≤

j ≤ n}, thus for all 1 ≤ j ≤ n, we have pj
sM ⊆ Nj. Since x ∈ M,
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then pj
sx ⊆ Nj, for all 1 ≤ j ≤ n. Also for any I ∈ Φi, we have

Isx ⊆ a0
sx ⊆ Nj, for all 0 ≤ j ≤ n, thus, Isx ⊆

⋂n
j=1Nj = 0. Therefore

by Remark 2.8, x ∈ H0
Φi

(M).
In order to prove the reverse, assume the contrary holds. Then there

exists x ∈ H0
Φi

(M) such that x /∈
⋂

cd(Φ,R/pj)>i Nj. Hence there is an

integer t such that x /∈ Nt and cd(Φ, R/pt) > i. Now since x ∈ H0
Φi

(M),
there exists an ideal b ∈ Φi such that xb = 0. Because of x /∈ Nt and
Nt is a pt-primary submodule, b ⊆ pt. Thus there is an integer j such
that pj ⊆ pt and cd(Φ,R/pj) ≤ i. Therefore, by virtue of Lemma 2.4,
we get cd(Φ,R/pt) ≤ cd(Φ,R/pj) ≤ i, which is a contradiction.
Now we want to show that Mi = H0

Φi
(M). Suppose that x ∈ Mi.

Then, by using Lemma 2.4, cd(Φ,Rx) ≤ i. Now, let p be an arbitrary
minimal prime ideal over AnnR(Rx). Thus, by using Lemma 2.4, we
gain that cd(Φ,R/p) ≤ i. On the other hand, since p ∈ AssR(Rx),
clearly p ∈ AssR(M), and so there is 1 ≤ j ≤ n such that pj = p.
Accordingly, there exsists b ∈ Φi such that b ⊆ p and then

(
∏
b∈Φi

b) ⊆ (
⋂
b∈Φi

b) ⊆ (
⋂

p∈minAss(Rx)

p).

Since Φi is a system of ideals, thus there exists c ∈ Φi such that

c ⊆ (
⋂

p∈minAss(Rx)

p) =
√

(0 : Rx).

Therefore, there exists an integer n such that cnx = 0. On the other
hand, by Remark 2.8, we have x ∈ H0

Φi
(M) thus Mi ⊆ H0

Φi
(M). To

prove the reverse inclusion, let p ∈ SuppH0
Φi

(M), then there exists an
ideal I ∈ Φi such that p ∈ V (I), since SuppH0

Φi
(M) ⊆ Ωi. Hence, there

is a prime ideal q ∈ AssM such that q ⊆ p and cd(Φ,R/q) ≤ i. Using
Lemma 2.4, we see that cd(Φ,R/p) ≤ i. Therefore, by Corollary 2.6,
we have cd(Φ, H0

Φi
(M)) ≤ i. Thus, by the maximality of Mi, clearly

Mi ⊆ H0
Φi

(M). �

Definition 2.10. Let R be a Noetherian ring, Φ be a system of ideals
of R and M be a non-zero finitely generated R-module with finite
cohomological dimension c := cd(Φ,M). We denote TR(Φ,M) as the
largest submodule of M such that cd(Φ, TR(Φ,M)) < c. In view of
Lemma 2.4, one can easily see that

TR(Φ,M) = ∪{N ≤M |cd(Φ, N) < c}.

Remark 2.11. Let R be a Noetherian ring, Φ be a system of ideals
of R and M be a non-zero finitely generated R-module with finite
cohomological dimension c := cd(Φ,M). Let {Mi}ci=0 be a cd-filtration
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of M with respect to Φ. Then TR(Φ,M) = Mc−1 and by Proposition
2.9, we have

TR(Φ,M) = H0
Φc−1

(M) =
⋂

cd(Φ,R/pj)=c

Nj,

where 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the
zero submodule 0 in M and Nj is a pj-primary submodule of M .

In the next proposition, we investigate some properties of associated
primes of cohomological dimension filtration of M , with respect to a
system of ideals of R.

Proposition 2.12. Let R be a Noetherian ring, and Φ be a system of
ideals of R and M be a non-zero finitely generated R-module with finite
cohomological dimension c := cd(Φ,M). Let {Mi}ci=0 be a cd-filtration
of M with respect to Φ. Then for all integers 0 ≤ i ≤ c,
(i)AssRMi = Ωi = {p ∈ AssRM |cd(Φ,R/p) ≤ i},
(ii)AssR(M/Mi) = AssRM \ Ωi = {p ∈ AssRM |cd(Φ,R/p) > i},
(iii)AssRMi/Mi−1 = Ωi \ Ωi−1 = {p ∈ AssRM |cd(Φ,R/p) = i}.

Proof. By Proposition 2.9, Mi = H0
Φi

(M). Also by [6, Lemma 2.2], we
get

AssRMi = AssRM ∩ Ωi.

Now (i), obtain easily from Lemma 2.4.
Using [4, Exercise 2.1.14] (ii) holds. To show (iii), as Mi/Mi−1 ⊆

M/Mi−1, so AssRMi/Mi−1 ⊆ AssRM/Mi−1, and it follows from part
(ii) that cd(Φ,R/p) ≥ i, for all p ∈ AssRMi/Mi−1. Moreover, with the
short exact sequence

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0,

and Lemma 2.4, we have

cd(Φ,Mi/Mi−1) ≤ cd(Φ,Mi) ≤ i.

Again Lemma 2.4, shows that cd(Φ,R/p) ≤ i, for all p ∈ AssRMi/Mi−1.
Hence

AssRMi/Mi−1 ⊆ {p ∈ AssRM |cd(Φ,R/p) = i}.
Now, let p ∈ AssRM and cd(Φ,R/p) = i. By virtue of part (i), p ∈
AssRMi, and p /∈ AssRMi−1. Now the exact sequence,

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0,

yields p ∈ AssRMi/Mi−1.Thus

AssRMi/Mi−1 = {p ∈ AssRM |cd(Φ,R/p) = i}.
�
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Remark 2.13. Let M = {Mi}ci=0 be the cd-filtration of M , with
respect to Φ where c = cd(Φ,M). Considering the exact sequence

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0,

in view of Lemma 2.5 and Proposition 2.12, we have cd(Φ,Mi) =
cd(Φ,Mi/Mi−1) for all 1 ≤ i ≤ c.

One of the main aims of this section is to establish the following
theorem, which gives a characterization of the cd-filtration of M with
respect to Φ, in terms of associated prime ideals of its factors. Recall
that, AssiR(M) = {p ∈ AssRM |cd(Φ,R/p) = i}, for all i ≥ 0.

Theorem 2.14. LetM = {Mi}ci=0 be a filtration of the finite R-module
M and Φ be a system of ideals of R such that cd(Φ,M0) = 0. The
following conditions are equivalent:
(i)AssR(Mi/Mi−1) = AssiR(M), for all 1 ≤ i ≤ c.
(ii)M is the cd-filtration of M with respect to Φ.

Proof. By applying Proposition 2.12 (iii), (ii ⇒ i) is clear. Thus it is
enough to prove (i⇒ ii). Considering the short exact sequence

0 −→Mi−1 −→Mi −→Mi/Mi−1 −→ 0.

First, we claim that

AssR(Mi−1) ∩ AssR(Mi/Mi−1) = ∅, for all 1 ≤ i ≤ c.

Suppose that, contrarily, for some 1 ≤ i ≤ c, then there exists p ∈
AssR(Mi−1)∩AssR(Mi/Mi−1). Therefore, cd(Φ,Mi−1) ≥ i by (i). By the
assumption, Assi−1

R (M) = AssR(Mi−1/Mi−2) so p /∈ AssR(Mi−1/Mi−2).
The short exact sequence

0 −→Mi−2 −→Mi−1 −→Mi−1/Mi−2 −→ 0,

yields p ∈ AssR(Mi−2). As cd(Φ,R/p) = i, thus cd(Φ,Mi−2) ≥ i. By
the continuation of this descending process, we have cd(Φ,M0) ≥ i > 0,
which is a contradiction. Now consider the exact sequence

0 −→Mc−1 −→M −→M/Mc−1 −→ 0.

Thus, cd(Φ,Mc−1) ≤ c− 1 as AssR(Mc−1)∩AssR(M/Mc−1) = ∅. Now,
suppose that the largest submodule of M is denoted by N such that
cd(Φ, N) ≤ c− 1 and p ∈ AssR(N/Mc−1). Because of AssR(N/Mc−1) ⊆
AsscR(M), we have cd(Φ,R/p) = c. But p ∈ SuppR(N/Mc−1) ⊆
SuppR(N) and therefore cd(Φ,R/p) ≤ cd(Φ, N) ≤ c − 1 which is
impossible. Hence, AssR(N/Mc−1) = ∅ and Mc−1 is the largest sub-
module of M such that cd(Φ,Mc−1) ≤ c − 1. Now descendingly, we
proceed with this method to prove that M is the cd-filtration of M
with respect to Φ. �
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Corollary 2.15. Let ∩nj=1Nj be a reduced primary decomposition of
the zero submodule 0 in M, where Ni is pi-primary. Let Φ be a system
of ideals of R and Mi = ∩cd(Φ,R/pj)>iNj for all 0 ≤ i ≤ c = cd(Φ,M). If
cd(Φ,∩cd(Φ,R/pj)>0Nj) = 0, then {Mi}ci=0 is the cd-filtration of M with
respect to Φ.

Proof. Let Li = ∩cd(Φ,R/pj)=iNj for all 0 ≤ i ≤ c. Obviously, Mi−1 =
Mi ∩ Li. By rewriting the indices, let Li = N1 ∩ ... ∩ Nm. By Theo-
rem 2.14, it is enough to show that AssR(Mi/Mi−1) = {p1, ..., pm}. We
know that AssR(Mi/Mi−1) = AssR(Mi + Li/Li) ⊆ AssR(M/Li). Also,
AssR(M/Li) = AssR(⊕n

j=1M/Nj) = {p1, ..., pm}, and so AssR(Mi/Mi−1)
⊆ {p1, ..., pm}. By the assumption we have

Mi−1 = ∩cd(Φ,R/pj)>i−1Nj = Li ∩ Li+1 ∩ ... ∩ Lc,

Mi = ∩cd(Φ,R/pj)>iNj = Li+1 ∩ Li+2 ∩ ... ∩ Lc.

We will show that pr ∈ AssR(Mi/Mi−1) for all 1 ≤ r ≤ m. Since
0 =

⋂n
j=1Nj is a reduced primary decomposition of zero submodule, it

yields

Mi−1 & (N1 ∩ ... ∩ N̂r ∩ ... ∩Nm) ∩ Li+1 ∩ ... ∩ Lc.

Let A := (N1∩ ...∩ N̂r∩ ...∩Nm)∩Li+1∩ ...∩Lc. So there exists x ∈ A
such that x /∈Mi−1.

Consequently, we deduce that (Mi−1 : x) = (Nr : x). Since Nr is pr-
primary, there exists t > 0 such that pr

tM ⊆ Nr. Hence pr
tM ⊆Mi−1.

Suppose that s ≥ 0 is the least integer such that ps+1
r x * Mi−1 and

psrx * Mi−1. This implies that there exists y ∈ psrx such that y /∈Mi−1.
Now, it is clear to see that pr = (Mi−1 : y), i.e, pr ∈ AssR(Mi/Mi−1).
This completes the proof. �
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