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SOME CAYLEY GRAPHS WITH PROPAGATION TIME
OF AT MOST TWO

E. VATANDOOST ∗

Abstract. In this paper the zero forcing number as well as propa-
gation time of Cay(G,Ω), where G is a finite group and Ω ⊂ G\{1}
is an inverse closed generator set of G is studied. In particular, it
is shown that the propagation time of Cay(G,Ω) is at most two
for some special generators.

1. Introduction

Let Γ = (V,E) be a simple graph of order n and size m. For a vertex
v ∈ V , the open neighborhood of v is the set NΓ(v) = {u ∈ V | u ∼ v}.
Also, the close neighborhood of vertex v, NΓ[v], is NΓ[v] = NΓ(v) ∪
{v}.The degree of a vertex v is deg(v) = |NΓ(v)|. The minimum degree
of a graph Γ denoted by δ(Γ). Let G be a non-trivial group with identity
element 1 and let Ω ⊆ G such that 1 6∈ Ω, Ω = Ω−1 = {ω−1 | ω ∈ Ω}.
The Cayley graph of G, Cay(G,Ω), is a graph with vertex set G and
two vertices u and v are adjacent if and only if uv−1 ∈ Ω.
Suppose that H1 = (V1, E1) and H2 = (V2, E2) are two graphs with
same order and µ : V1 → V2 is a bijection. Define the matching graph
(H1, H2, µ) to be the graph constructed as the disjoint union of H1, H2

and perfect matching between V1 and V2 defined by µ. Let each vertex
of a graph Γ be either ”black” or ”white”. Let B denote the (initial)
set of black vertices Γ. If the white vertex v is the only white neighbour
of a black vertex u, then u changes the color of v to black (color-change
rule) and we say ”u forces v”. The set B is said to a zero forcing set of
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Γ if all vertices of Γ will be turned black after finitely many applications
of the color-change rule. The zero forcing number of Γ, Z(Γ), is the
minimum cardinality among all zero forcing sets. The notation of a
zero forcing sets of G, as well as the associated zero forcing number of
a graph was introduced by the ”AIM Minimum Rank-Special Graphs
Work Group” in (2008) [1]. They used the technique of zero forcing
parameter of graph Γ and found an upper bound for the maximum
nullity of Γ related to zero forcing sets. For more results in zero forcing
number and Cayley graph, see [2, 4, 5, 6, 12].
Let Γ = (V,E) be a graph and B a zero forcing set of Γ. Also let
B(0) = B and for t > 0, B(t+1) is the set of vertices w for which there
exists a vertex b ∈

⋃t
s=0 B

(s) such that w is the only neighbour of b not

in
⋃t

s=0B
(s). The propagation time of B in Γ, denoted by Pt(Γ, B),

is the smallest integer t0 such that V =
⋃t0

t=0B
(t). The minimum

propagation time of Γ is

Pt(Γ) = min{Pt(Γ, B) | B is a minimum zero forcing set of Γ}.

The propagation time of a zero forcing set was implicit in [3] and ex-
plicit in [10]. In 2012 Hogben et al. in [7] established some results
regarding graphs having propagation time 1.
In this paper, the propagation time of Cay(G,Ω) is considered. Also
it is shown that the propagation time of Cay(G,Ω) is at most two for
some special generators.

2. Preliminaries

For investigating the propagation time of Cayley graphs, the follow-
ing basic properties are useful.

Theorem 2.1. [2] For any graph Γ, δ(Γ) 6 Z(Γ).

Theorem 2.2. [6] Let Γ be a connected graph of order n > 2. Then
Z(Γ) = n− 1 if and only if Γ = Kn.

Theorem 2.3. [7] Let Γ be a graph. Then any two of the following
conditions imply the third:
1. |Γ| = 2Z(Γ).
2. Pt(Γ) = 1.
3. Γ is a matching graph.

Lemma 2.4. Let G = 〈Ω〉 be a finite Abelian group, 1 /∈ Ω = Ω−1

and G \ Ω = {x} ∪H such that x /∈ H. If H is a subgroup of G, then
o(x) = 2, |H|

∣∣ |G|/2 and 2
∣∣ [G : H].
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Proof. Since Ω = Ω−1 and H is a subgroup of G, o(x) = 2. So N =
{1, x} is a subgroup of G. Let H = {h1 = 1, h2, . . . , ht}. Then for
i 6= j and 1 ≤ i, j ≤ t, since hih

−1
j ∈ H, Nhi 6= Nhj and so the

cosets N = Nh1, Nh2, . . . , Nht are distinct. If G = ∪t
i=1Nhi, then

[G : N ] = t. Otherwise, there is an y1 ∈ G \ ∪t
i=1Nhi. It is easy to see

that for 1 ≤ i ≤ t and 0 ≤ j ≤ 1, the cosets Nhiyj are distinct, where
y0 = 1. If G = ∪1

j=0(∪ti=1Nhiyj), then [G : N ] = 2t. Since G is a finite
group, there is ` ∈ N such that Nhiyj for 1 ≤ i ≤ t and 0 ≤ j ≤ ` are
distinct and G = ∪`j=0(∪ti=1Nhiyj). Hence [G : N ] = t(`+1). Therefore
t | [G : N ].
Similarly, if G = H ∪Hx, then [G : H] = 2. Otherwise, we can assume
that there is a y1 ∈ G\(H∪Hx). Then for 0 ≤ i ≤ 1 and 0 ≤ j ≤ 1, the
cosets Hxiyj are distinct, where x0 = y0 = 1 and x1 = x. Since G is a
finite group, there is ` ∈ N such that Hxiyj for 0 ≤ i ≤ 1 and 0 ≤ j ≤ `
are distinct and G = ∪1

i=0(∪`
j=0Hxiyj). Hence [G : H] = 2(`+ 1). �

Lemma 2.5. Let G be a group and H be a proper subgroup of G. Then
G = 〈G \H〉.

Proof. It is clear that G = H ∪ 〈G \H〉. So H ⊆ 〈G \H〉 or 〈G \H〉 ⊆
H. If 〈G \ H〉 ⊆ H, then G = H, which is a contradiction. Thus
H ⊆ 〈G \H〉 and so G = 〈G \H〉. �

Theorem 2.6. [11] Let Kn1,...,nk
be a complete multipartite graph such

that ni > 1 for some 1 6 i 6 k. Then Z(Kn1,...,nk
) = n1 + · · ·+ nk − 2.

Lemma 2.7. Let Kn1,...,nk
(n1 6 n2 6 · · · 6 nk) be a complete mul-

tipartite graph. If 1 = n1 = n2 = · · · = nk−1 and 2 6 nk, then
Pt(Kn1,...,nk

) = 2. Otherwise, Pt(Kn1,...,nk
) = 1.

Proof. By Theorem 2.6, Z(Kn1,...,nk
) = k + nk − 3 = n − 2 where

n = n1+· · ·+nk. Let V (Kn1,...,nk
) =

⋃k
i=1 Vi and |Vi| = ni for 1 6 i 6 k.

Let 1 = n1 = n2 = · · · = nk−1, 2 6 nk and B = (
⋃k

i=1 Vi) \ {x, y} be
a zero forcing set for Kn1,...,nk

. Then x ∈ Vk and y /∈ Vk or x /∈ Vk and
y ∈ Vk. Without loss of generality, we can assume that x ∈ Vk and
y ∈ Vi for some 1 6 i 6 k − 1. Since y is not black vertex, x cannot
be forced by any black vertex in the first stage. But every black vertex
in Vk forces y and second stage x is forced by y. Thus B(0) = B,
B(1) = {y}, B(2) = {x} and so V (Kn1,...,nk

) = B(0) ∪B(1) ∪B(2). Hence
for every zero forcing set B of Kn1,...,nk

, we have Pt(Kn1,...,nk
, B) = 2.

Therefore Pt(Kn1,...,nk
) = 2.

Let there exist 1 6 i, j 6 k such that 2 6 ni 6 nj, a ∈ Vi, b ∈ Vj
and B = (

⋃k
i=1 Vi) \ {a, b} be the initial black vertices of Kn1,...,nk

.
Then every black vertex in Vi forces b and every black vertex in Vj
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forces a, in the first stage. Hence, B(0) = B, B(1) = {a, b} and so
V (Kn1,...,nk

) = B(0) ∪ B(1). Thus Pt(Kn1,...,nk
, B) = 1 and therefore

Pt(Kn1,...,nk
) = 1. �

3. Propagation time for a finite group

In this section, the propagation time of Cayley graph for some groups
with special generator set is considered.

Theorem 3.1. Let G be a finite group of order n and H 6= {1} a
proper subgroup of G. Then Pt(Cay(G,G \H)) = 1.

Proof. Set Ω = G\H. By Lemma 2.5, G = 〈Ω〉. Also we have Ω = Ω−1

and 1 /∈ Ω. Let [G : H] = k and Ha1, Ha2, . . . , Hak be the dis-
tinct cosets of H in G, where a1 = 1. For h1 and h2 in H, we have
(h1aj)(h2aj)

−1 = h1h
−1
2 ∈ H (1 ≤ j ≤ k). Thus induced subgraphs

on Hai in Cay(G,Ω) for 1 ≤ i ≤ k are empty graph. Also sup-
pose that (haj)(h

′
a`)

−1 ∈ H for haj ∈ Haj and h
′
a` ∈ Ha`. Then

aja
−1
` ∈ H and so Haj = Ha`. Which is a contradiction. Thus

(haj)(h
′
a`)

−1 /∈ H. Hence haj is adjacent to h
′
a`. Therefore Cay(G,Ω)

is isomorphic to Kn1,...,nk
and n1 = · · · = nk = |H| ≥ 2. By Lemma

2.7, Pt(Cay(G,Ω)
)

= 1. �

Theorem 3.2. Let G = 〈Ω〉 be a group of order n, x ∈ Ω and
o(x) = 2. If H =

(
Ω \ {x}

)
∪ {1} is a normal subgroup of G, then

Pt(
(
Cay(G,Ω)

)
= 1.

Proof. Since o(x) = 2, so n is even. Let H = {1 = h1, h2, . . . , ht}. Then
hih

−1
j ∈ H and (hix)(hjx)−1 ∈ H for each 1 ≤ i, j ≤ t. So induced sub-

graphs on H and Hx = xH in Cay(G,Ω) are isomorphic to complete
graph Kt. Also for 1 ≤ i ≤ t, we have NCay(G,Ω)[hi] = H ∪ {xhi} and
NCay(G,Ω)[xhi] = {hi} ∪ Hx. Since Cay(G,Ω) is a t-regular connected
graph, G = H ∪Hx = H ∪xH, so n = 2t. Thus Cay(G,Ω) is a match-
ing graph. Let B = H be the initial black vertices in Cay(G,Ω). For
each 1 6 i 6 t, xhi is the only white neighbour of black vertex hi,
so xhi is forced by hi. Thus B is a zero forcing set of Cay(G,Ω) and
so Z(Cay(G,Ω)) 6 t. Then by Theorem 2.1, Z(Cay(G,Ω)) = t = n

2
.

Hence by Theorem 2.3, we get Pt
(
Cay(G,Ω)

)
= 1. �

Theorem 3.3. Let G be an Abelian group of order n and H a proper
subgroup of G such that [G : H] = α. Let x ∈ G \ H, o(x) = 2,
G \ (H ∪ {x}) = Ω and G = 〈Ω〉. Then Pt(Cay(G,Ω)) = 1



SOME CAYLEY GRAPHS WITH ... 141

Proof. Let g ∈ G \ H. Then Hg ⊆ Ω ∪ {x} and induced subgraphs
on H and Hg in Cay(G,Ω) are empty. By Lemma 2.4, α = 2k, for
some k ∈ N and G = ∪kj=1Hyjx ∪kj=1 Hyj, where the cosets Hyjx and
Hyj are distinct (y1 = 1). By definition of Cayley graph, every vertex
hyjx ∈ Hyjx is adjacent to all of the vertices of G\(Hyjx∪{hyj}). Let
B be a zero forcing set of Cay(G,Ω) such that Z(Cay(G,Ω)) = |B|.
Since Cay(G,Ω) is a vertex transitive graph, we may assume that 1 ∈ B
is the first forcing process. So there is C ⊆ Ω∩B such that |C| = |Ω|−1.
So |Ω| 6 Z(Cay(G,Ω)). If there are three white vertices in H, then
each black vertex has at least two white vertices in its neighborhood.
Thus the forcing process is stopped, which is not possible.
So n − 4 6 Z(Cay(G,Ω)). Let B = G \ {hi, hj, x, h`x} be the initial
black vertices in Cay(G,Ω), where hi, hj and h` are distinct and belong
to H. Since h`x is the only white neighbour of black vertex 1, so h`x is
forced by 1. Since hi is the only white neighbour of black vertex hjx, so
hjx forces hi. Similarly hix forces hj. Also x is the only white neighbour
of black vertex h`, so x is forced by h`. Thus Z(Cay(G,Ω)) = n − 4.
Furthermore we have G = B(0) ∪ B(1) and so Pt(Cay(G,Ω), B) = 1.
This shows that Pt(Cay(G,Ω)) = 1. �

Corollary 3.4. Let G = 〈a〉 be a cyclic group of order 2n, where n is
odd. If Ω = {a2i+1 | 0 ≤ i ≤ n− 1} \ {an}, then Pt(

(
Cay(G,Ω)

)
) = 1.

Proof. It is easy to see that if 〈a2〉 = H, then G \ Ω = H ∪ {an}. The
result follows by Theorem 3.3. �

Theorem 3.5. Let G = 〈Ω〉 be a finite group of order n > 5, 1 /∈ Ω =
Ω−1 and Z(Cay(G,Ω)) = |Ω|.
1. If Pt(Cay(G,Ω)) = 1, then |G \ Ω| ≤ |Ω|.
2. If Pt(Cay(G,Ω)) = 1 and |G \ Ω| = |Ω|, then G is not a simple
group.

Proof. Let B be a zero forcing set for Cay(G,Ω) with minimum car-
dinality such that Pt(Cay(G,Ω), B) = 1. Since Cay(G,Ω) is a vertex
transitive graph, we may assume that 1 ∈ B is the first forcing process.
Hence B = {1}∪Ω\{a}, for some a ∈ Ω. Since Pt(Cay(G,Ω), B) = 1,
for every x ∈ Ω\{a} and y ∈ G\B, we have |NCay(G,Ω)(x)∩G\B| ≤ 1
and |NCay(G,Ω)[y] ∩B| ≥ 1.Thus |G \B| ≤ |B| and so |G \ Ω| ≤ |Ω|.
Now let Pt(Cay(G,Ω)) = 1 and |G \ Ω| = |Ω|. By Theorem 2.3,
Cay(G,Ω) is a matching graph.
Let B be a zero forcing set for Cay(G,Ω) with minimum cardinality
such that Pt(Cay(G,Ω), B) = 1. We may assume that B = {1} ∪
Ω \ {a}, where a ∈ Ω. Since Cay(G,Ω) is a |Ω|−regular graph and
|Ω| = |B|, induced subgraphs on B and G \B are complete graph Kn

2
.
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Also NCay(G,Ω)[a] ∩ Ω = {a}. We claim that o(a) = 2.
Let o(a) = k and k 6= 2. Since a2 is adjacent to a, a2 /∈ Ω. Thus k 6= 3.
If k = 4, then since n ≥ 5, there is an x ∈ B \ {1, a−1}. Thus x is adja-
cent to a−1 in Cay(G,Ω). So xa ∈ Ω. It is clear that (xa)a−1 = x ∈ Ω.
Hence xa ∈ Ω is adjacent to a, in Cay(G,Ω), which is contract to this
fact that |NCay(G,Ω)[a] ∩ Ω| = 1. Now let k ≥ 5. It is clear that a2 is
adjacent to a and so a2 /∈ Ω. Thus a3 is not adjacent to a in Cay(G,Ω).
Hence a3 ∈ Ω. On the other hand a3 is adjacent to a2 and a4. Thus
a4 ∈ Ω. Also a4 is adjacent to a, which is contract to this fact that
|NCay(G,Ω)[a] ∩ Ω| = 1. Therefore o(a) = 2. This shows that for every
x ∈ B we have x−1 ∈ B. Since induced subgraph on B is complete
graph Kn

2
, so xy−1 ∈ B, for every x and y belong to B. Therefore B is

a subgroup of G. Furthermore G = B ∪Ba or [G : B] = 2. Hence B is
a normal subgroup of G and so G is not a simple group. �

Theorem 3.6. Let G =< a > be a cyclic group of order even n ≥ 6
and let Ω = G \ {1, a2, a

n
2 , an−2}. Then

Pt(Cay(G,Ω)) =

{
1 n ∈ {8, 12}
2 otherwise

.

Proof. Let n = 6. Then Cay(G,Ω) is isomorphic to C6. Hence,
Pt(Cay(G,Ω)) = 2.
Let n = 8. Then G \ Ω = {1, a2, a4, a6} is a subgroup of G. By
Theorem 3.1, Pt(Cay(G,Ω)) = 1. Let n = 12 and B be a zero forc-
ing set of Cay(G,Ω) with minimum cardinality. Since Cay(G,Ω) is
a vertex transitive graph, we may assume that 1 ∈ B is the first
forcing process. Then there exists C ⊆ Ω such that C ⊆ B and
|C| = 7. So 8 6 |B|. Also we have NCay(G,Ω)[a

2] = NCay(G,Ω)[a
6] =

NCay(G,Ω)[a
10] = G \ {1, a4, a8}. So there exist D ⊆ {a2, a6, a10} such

that D ⊆ B and |D| = 2. Hence, 10 6 |B|. Since Cay(G,Ω) is not a
complete graph, we have |B| = 10, it is from Theorem 2.2. Suppose
that B = G \ {a4, a10}, then B(1) = {a4, a10}. Thus G = B(0) ∪ B(1)

and so Pt(Cay(G,Ω), B) = 1. Therefore Pt(Cay(G,Ω)) = 1.
Now let n > 10 be even and n 6= 12. Then a

n
2
−2 ∈ Ω, a

n
2
−2 is not

adjacent to a−2, a
n
2
−2 is not adjacent to a

n
2 and a

n
2
−2 is adjacent to

a2. Also we have a
n
2

+2 ∈ Ω, a
n
2

+2 is not adjacent to a2, a
n
2

+2 is not
adjacent to a

n
2 and a

n
2

+2 is adjacent to a−2.
If X = G \ {a2, a

n
2 , a−2, a

n
2

+4} is initial black vertices in Cay(G,Ω),
then 1 forces a

n
2

+4 and a
n
2

+2 forces a−2 in the first stage. Also we
have a

n
2 ∈ NCay(G,Ω)(a

4) and a2 /∈ NCay(G,Ω)(a
4). So a

n
2
−2 forces a2

and a4 forces a
n
2 in the second stage. Hence, X is a zero forcing set

of Cay(G,Ω) and so Z(Cay(G,Ω)) ≤ |X| = n − 4. By Theorem
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2.1, Z(Cay(G,Ω)) = n − 4. Furthermore we have X(0) = X, X(1) =
{a−2, a

n
2

+4} and X(2) = {a2, a
n
2 }. Hence, Pt(Cay(G,Ω), X) = 2 and

so Pt(Cay(G,Ω)) ≤ 2.
On the contrary, let B be a zero forcing set of Cay(G,Ω) with min-
imum cardinality such that Pt(Cay(G,Ω), B) = 1. We may assume
that 1 ∈ B is the first forcing process. Then there exists a` ∈ Ω
such that a` 6∈ B and 1 forces a`. Since Z(Cay(G,Ω)) = n − 4, so
{a2, a

n
2 , a−2}∩B = φ. Hence there exist aj, ak and ar in Ω such that a` 6∈

NCay(G,Ω)(a
k) ∪ NCay(G,Ω)(a

j) ∪ NCay(G,Ω)(a
r) and aj ∈ NCay(G,Ω)(a

2),

ak ∈ NCay(G,Ω)(a
n
2 ) and ar ∈ NCay(G,Ω)(a

−2).

Furthermore aj /∈ NCay(G,Ω)(a
−2)∪NCay(G,Ω)(a

n
2 ), ak /∈ NCay(G,Ω)(a

−2)∪
NCay(G,Ω)(a

2) and ar /∈ NCay(G,Ω)(a
n
2 ) ∪ NCay(G,Ω)(a

2). We have a2 6∈
NCay(G,Ω)(a

4)∪NCay(G,Ω)(a
n
2

+2)∪NCay(G,Ω)(1). So k ∈ {4, n
2

+ 2}. Since

ak ∈ NCay(G,Ω)(a
n
2 ), k = 4. We know that ak /∈ NCay(G,Ω)(a

−2), so a4 is
not adjacency to a−2.Which is a contradiction. Therefore Pt(Cay(G,Ω)) =
2. �

Let U6n =< a, b | a2n = b3 = 1, a−1ba = b−1 > . Then U6n =⋃2
i=1(Vi ∪ Vib∪ Vib2), where Vi = {a2k−i | 1 6 k 6 n} for i = 1, 2. With

this notations we prove the following results.

Theorem 3.7. Let G ∼= U6n and Ω = V1 ∪ V1b ∪ V1b
2. Then

Pt(Cay(G,Ω)) = 1.

Proof. By the definition of Cayley graph, the induced subgraph on Ω is
empty. Since Cay(G,Ω) is 3n−regular, so every vertex of Ω is adjacent
to every vertex in G \ Ω. Hence, Cay(G,Ω) is isomorphic to complete
bipartite graph K3n,3n. By Lemma 2.7, Pt(Cay(G,Ω)) = 1. �

Theorem 3.8. Let n be odd, G ∼= U6n and Ω = V2 \ {1} ∪ V2b∪ V2b
2 ∪

{an}. Then Pt(Cay(G,Ω)) = 1.

Proof. Let X = V2 ∪ V2b ∪ V2b
2 and Y = V1 ∪ V1b ∪ V1b

2. Then the
induced subgraphs on X and Y are isomorphic to complete graph K3n.
Also Cay(G,Ω) is isomorphic to graph in Figure 2.

X Y

FIGURE 2: Dashed line: Every vertex of X is adjacent to exactly one vertex of Y.

Let X be the set of initial black vertices of Cay(G,Ω). Then for ev-
ery 0 6 k ≤ n − 1, a2k forces a2k+n, a2kb forces a2k+nb and a2kb2

forces a2k+nb2. Hence, X is a zero forcing set of Cay(G,Ω) and so
Z(Cay(G,Ω)) ≤ |X| = 3n. By Theorem 2.1, Z(Cay(G,Ω)) = 3n. Since
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Cay(G,Ω) is a matching graph and |Cay(G,Ω)| = 2Z(Cay(G,Ω)), by
Theorem 2.3, Pt(Cay(G,Ω)) = 1. �

Question 3.9. Which Cayley graphs have propagation time one?
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