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COMAXIMAL INTERSECTION GRAPH OF IDEALS
OF RINGS

M. M. ROY, M. BUDHRAJA, AND K. K. RAJKHOWA ∗

Abstract. The comaximal intersection graph CI(R) of ideals of
a ring R is an undirected graph whose vertex set is the collection
of all non-trivial (left) ideals of R and any two vertices I and J
are adjacent if and only if I + J = R and I ∩ J 6= 0. We study the
connectedness of CI(R). We also discuss independence number,
clique number, domination number, chromatic number of CI(R).

1. Introduction

In the past decade, many researchers have studied the interplay be-
tween ring structure and graph structure. They defined graphs whose
vertices are elements in a ring or are ideals in the ring and edges are
defined with respect to certain conditions on the elements of the ver-
tex set. This idea was initially conceived by Beck[9] in 1988, where
he introduced the zero-divisor graph Γ(R) for a commutative ring R,
whose vertex set is the set of elements in R, and two distinct vertices x
and y are adjacent if and only if xy = 0. After that, a lot of work was
done in this area. In 1999, Anderson and Livingston in [5] modified the
zero-divisor graph Γ(R) by taking the vertex set as the set of non-zero
zero-divisors of R. This modified graph Γ(R) has better graph struc-
ture than the previous one. For more details about this graph one can
refer to [4]. In 2011, Behboodi and Rakeei [10] defined a new graph
called the annihilating-ideal graph AG(R) on a commutative ring R,
where they used non-zero proper ideals as vertices instead of non-zero
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zero divisors of the ring. For more details about this graph one can
refer to [2, 1, 10, 11].

In the year 1995, Sharma and Bhatwadekar [20] introduced a graph
Ω(R) on a commutative ring R, whose vertex set is the set of elements
of R and two distinct vertices x, y are adjacent if and only if Rx +
Ry = R. In 2008, Maimani et al. [17] modified this graph by taking
vertex set consists of non-unit elements of R and named this graph
as the co-maximal graph of R. In 2012, Ye and Wu [22] introduced
the graph C(R), the co-maximal ideal graph on a commutative ring R
with identity, whose vertices are the proper ideals of R that are not
contained in the Jacobson radical of R, and two vertices I1 and I2 are
adjacent if and only if I1 + I2 = R. Using the complement concept of
this graph, Barman and Rajkhowa[8] introduced the non-comaximal
graph of ideals of a ring R, whose vertex set is the collection of all
non-trivial (left) ideals of R and any two distinct vertices I and J are
adjacent if and only if I+J 6= R. They denoted this graph by NC(R).

In 2009, Chakrabarty et al. [12] introduced the intersection graph
of ideals of rings, denoted by G(R), whose vertex set is the set of
nontrivial left ideals of R and any two vertices I, J are adjacent if and
only if I ∩ J 6= 0. Utilising this insight, Rajkhowa and Saikia [18]
introduced the prime intersection graph of ideals of a ring G(R) by
imposing one additional condition on the adjacency of two vertices I, J
that one of I or J must be a prime ideal of R. For more details about
intersection graph of ideals one can refer to [12, 18, 3, 21].

In this paper, we combine two concepts, the co-maximal ideal graph
and the intersection graph of ideals of a ring and define a new graph
called comaximal intersection graph CI(R) of ideals of a ring R, whose
vertex set is the collection of all non-trivial (left) ideals of R and two
vertices I and J are adjacent if and only if I + J = R and I ∩ J 6= 0.

By G, we mean an undirected simple graph with the vertex set V (G),
unless otherwise mentioned. A walk in G is an alternating sequence of
vertices and edges, v0e1v1 · · · envn, where each edge ei = vi−1vi . If the
beginning and the ending vertices of a walk are same then the walk
is called a closed walk. In a walk, if all the vertices are distinct, it is
called a path. A circuit is a closed walk in which all the vertices are
distinct. The total number of edges in a circuit is called the length of
the circuit. The length of a smallest circuit in G is called the girth
of G and is denoted by girth(G). If G does not contain a circuit
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then girth(G) = ∞. G is called a connected graph if for any two
distinct vertices there is a path connecting them. A graph which is
not a connected graph is called a disconnected graph. A graph that
does not contain any edge is called a totally disconnected graph. In a
connected graph G, the distance d(u, v) between two vertices u and v is
the length of the shortest uv-path in G. The greatest distance between
any two vertices u and v in G is called the diameter of G and denoted by
diam(G). If G is not connected then diam(G) =∞. The complement
graph of G denoted by G is the graph with vertex set V (G) such that
two vertices are adjacent in G if and only if they are not adjacent in
G. G is called a complete graph if every two distinct vertices in G are
adjacent. A clique is a complete subgraph of G. The clique number of
G, denoted by ω(G), is the cardinality of the maximum clique of G. If,
in a set of vertices of G, no two vertices are mutually adjacent then it
is called an independent set. The independence number of a graph G is
the cardinality of a maximum independent set and is denoted by α(G).
The chromatic number of G, denoted by χ(G) is the minimum number
of colors assigning to the vertices of G so that no two adjacent vertices
have the same color. The graph G is weakly perfect if ω(G) = χ(G).
A set D of vertices in G is called a dominating set of G if every vertex
which is not in D is adjacent to at least one vertex in D. The minimum
cardinality of a dominating set of G is called the domination number of
G and is denoted by γ(G). A set D is called a global dominating set of
G if it is a dominating set for both the graphs G and its complement G.
The minimum cardinality of a global dominating set is called the global
domination number ofG and is denoted by γg(G). The domatic number
of a graph G is the maximum order of partitions of vertices of G into
disjoint dominating sets and is denoted by d(G). The global domatic
number of a graph G, denoted by dg(G) is equal to the maximum
order of partitions of vertices into disjoint global dominating sets. Any
undefined terminology can be obtained in [19, 16, 7]

Henceforth, R denotes a commutative with multiplicative identity
unless otherwise specified. R is called local if it has a unique maximal
ideal. R is said to be an artinian ring if every descending chain of ideals
in R is stationary. A UFD is an integral domain in which every non-
zero non-unit element can be written as a product of prime elements,
uniquely up to order and units. R is said be an essential extension
of an ideal I if for every non-zero ideal J of R , I ∩ J 6= 0. Any
undefined terminologies are available in [14, 15, 6]. In this paper, J(R)
is the Jacobson radical, Min(R) set of minimal ideals, Max(R) set
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of maximal ideals of R and I(M), set of ideals of R contained in the
maximal ideal M .

2. Connectedness of CI(R)

In this section, connectedness of CI(R) is discussed. This section
also contains results on diameter and girth. In [8], Theorem 2.3. states:
“NC(R) is totally disconnected if and only if every non-trivial ideal
of R is maximal as well as minimal”. In the following theorem, we
establish the similar result for CI(R).

Theorem 2.1. CI(R) is totally disconnected if and only if R is local
or every non-trivial ideal of R is maximal (as well as minimal).

Proof. Assume that CI(R) is totally disconnected. Take two vertices
I, J of CI(R). Then either I + J 6= R or I ∩ J = 0. If I + J 6= R,
then I + J $ M , M is a maximal ideal of R. In this case, I ⊆ M ,
J ⊆ M and so R is local. Also if I ∩ J = 0, then there is nothing
to prove whenever R is local. Assume that both I and J are not
maximal. If I is not maximal, then we have a maximal ideal N such
that I $ N . So J +N = R will imply that I = N , as I + J = R. But
this is a contradiction since N is a maximal ideal. Hence every ideal is
maximal. �

Theorem 2.2. There is an isolated vertex I in CI(R) if and only if I
is contained in every maximal ideal of R or I ∩M = 0.

Proof. If there exists an ideal I which is contained in every maximal
ideal of R, then it is easy to notice that I is an isolated vertex in CI(R).
Similarly if there exists an ideal I which is not contained in a maximal
ideal M of R with I ∩ M = 0, then also I is an isolated vertex in
CI(R). For the converse part, if there exists an isolated vertex I in
CI(R) which is not contained in a maximal ideal M , then I +M = R.
Thus I ∩M = 0. Hence the theorem. �

Corollary 2.3. The ideals contained in J(R) are isolated vertices in
CI(R).

Theorem 2.4. If R is an artinian ring, every ideal in Min(R) is an
isolated vertex of CI(R).

Proof. Let I be a minimal ideal in R. Then for any non-trivial ideal J
of R, either I ∩ J = 0 or I ∩ J 6= 0. If I ∩ J 6= 0 then I ∩ J = I ⊆ J
and so I + J = J 6= R. �

Theorem 2.5. Let R be a finite UFD. Then CI(R) is disconnected if
and only if CI(R) has an isolated vertex.
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Proof. Assume that CI(R) is disconnected and p1, p2, · · · , pr, r ≥ 1
are the r number of prime elements of R. If k1, k2, · · · , kr are the
maximum exponents of p1, p2, · · · , pr respectively, then (pj11 p

j2
2 · · · pjrr ),

1 ≤ jl ≤ kl, l = 1, 2, · · · , r is an isolated vertex. �

Theorem 2.6. If R is an essential extension of each of the non-zero
ideals of R, then CI(R) is connected if and only if R is not a local ring.

Proof. Assume that R is not a local ring. If I and J are two non-zero
ideals of R, then I and J will be contained in M1 and M2 respectively,
where M1 and M2 are two maximal ideals of R. If M1 = M2, then there
is another maximal ideal M and so I−M−J is a path between I and J ,
as I ∩M 6= 0, J ∩M 6= 0. Moreover, if M1 6= M2, then I−M2−M1−J
is a path between I and J , as R is an essential extension of each of
the non-zero left ideals of R. In the opposite direction, by contrary
assume that R is local. But then CI(R) is a disconnected graph, in
fact a totally disconnected graph by Theorem 2.1. This completes the
proof. �

In [21], Theorem 2.4 states: “ For a ring R, the co-maximal ideal
graph C(R) is a simple, connected graph with diameter less than or
equal to three”. We have established a similar result in the following
theorem.

Theorem 2.7. Let R be an essential extension of each of the non-zero
ideals of R, then diam(CI(R)) ≤ 3 or ∞.

Proof. Suppose that CI(R) is connected. Let I and J be any two ideals
of R. If I and J are adjacent, then diam(CI(R)) < 3. If I and J are
not adjacent, then either I + J 6= R or I ∩ J = 0. Since R is an
essential extension of each of the non-zero ideals of R, so we must have
I + J 6= R. This implies I and J are not maximal ideals of R. Let
I ⊂ M1 and J ⊂ M2, where M1 and M2 are maximal ideals of R. If
M1 = M2, then there is another maximal ideal M and so I −M − J
is a path between I and J , as I ∩M 6= 0, J ∩M 6= 0. Moreover, if
M1 6= M2, then I −M2 −M1 − J is a path between I and J , as R
is an essential extension of each of the non-zero ideals of R. Hence
diam(CI(R)) ≤ 3. Hence the theorem. �

Theorem 2.8. If J(R) 6= 0, then diam(CI(R)) =∞.

Theorem 2.9. If J(R) 6= 0, then diam(CI(R)) ≤ 2.

Theorem 2.10. If R is an artinian ring, then diam(CI(R)) =∞.

Theorem 2.11. If R is an artinian ring, then diam(CI(R)) ≤ 2.
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Theorem 2.12. CI(R) is not a complete graph.

Proof. If R is a local ring, then CI(R) is totally disconnected. Assume
that R is not a local ring. If J(R) = 0, then there exist maximal ideals
which intersect trivially. Moreover, if J(R) 6= 0, then every non-trivial
ideal is not maximal. Thus there is a non-trivial ideal which is properly
contained in a maximal ideal. In either case, CI(R) is not a complete
graph. Hence the theorem. �

Theorem 2.13. Let J(R) be a minimal ideal. Then CI(R) contains
no circuit if and only if |Max(R)| ≤ 2.

Proof. For |Max(R)| = 1, it is obvious. Suppose |Max(R)| = 2. Our
aim is to show CI(R) contains no circuit. On the contrary, suppose
I1 − I2 − · · · − In − I1 is a circuit in CI(R). Then each Ii is contained
in a maximal ideal Mi, i = 1, 2. Observe that no two ideals Ii and
Ii+1 are contained in a single maximal ideal. If this happens, then the
corresponding ideals are not adjacent. But it is possible Ii−1, Ii+1 are
in same Mi, i = 1, 2. Let Ii−1, Ii+1 ⊆ M1 and Ii ⊆ M2. Since Ii − Ii+1

is an edge, so Ii+1 6⊆ J(R). Therefore Ii+1 = M1 as Ii+1 ∩ J(R) = 0
implies Ii− Ii+1 not an edge. Similarly we will have Ii−1 = M1. Hence
n = 2. Thus CI(R) contains no circuit. Conversely, if |Max(R)| ≥ 3,
then we get a circuit. The proof is complete. �

In [21], Theorem 4.5. shows that C(R) is a (complete) bipartite
graph if and only if R has exactly two maximal ideals. In the following
theorems, we also establish the same results.

Theorem 2.14. Let J(R) 6= 0. Then CI(R) is a bipartite graph if and
only if |Max(R)| ≤ 2.

Proof. If |Max(R)| ≥ 3, then M1 −M2 −M3 −M1 is a cycle of length
3 in CI(R), where Mi ∈Max(R). So, CI(R) is not a bipartite graph.
If |Max(R)| = 2, then from proof of Theorem 2.13; if CI(R) contains
a cycle, the length of the cycle should be even as no two ideals Ii and
Ii+1 are contained in a single maximal ideal. �

Theorem 2.15. Let R be an essential extension of each of the non-
zero left ideals of R, then CI(R) is a complete bipartite graph if and
only if |Max(R)| = 2.

Theorem 2.16. If J(R) 6= 0, then girth(CI(R)) ≤ 4, whenever CI(R)
contains a circuit.

Proof. IfMax(R) = 2 and CI(R) contains a circuit, then girth(CI(R)) =
4, which can be obtained from the proof of Theorem 2.13 and Theorem
2.14. If |Max(R)| ≥ 3, then M1 −M2 −M3 −M1 is a circuit, where
Mi ∈Max(R), i = 1, 2, 3. �
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3. Independence number, clique number and domination
number of CI(R)

In this section, we discuss independence number, clique number,
chromatic number, domination number, global domination number and
domatic number of CI(R).

In the following theorem, we find the total number of maximal in-
dependent sets in CI(Zn) and the independence number of CI(Zn).
Then we try to generalise the result.

Theorem 3.1. The independence number of CI(Zn) is |I(Mj)|, where

n = pk11 p
k2
2 · · · pkrr and j is corresponding to maximum value of kj, j =

1, 2, · · · , r.

Proof. Here n = pk11 p
k2
2 · · · pkrr . So a maximal independent set of CI(Zn)

is the collection of all ideals which are generated by multiple of pi, i =
1, 2, · · · , r. There are r maximal independent sets in CI(Zn). The
cardinality of maximal independent set I(M1) which contains the ideals
multiple of p1 is |I(M1)| = k1+k1(k2+k3+· · ·+kr)+k1k2(k3+· · ·+kr)+
· · ·+ k1k2 · · · kr − 1. Similarly, the cardinality of maximal independent
set I(M2) which contains the ideals multiple of p2 is |I(M2)| = k2 +
k2(k1+k3+· · ·+kr)+k1k2(k3+· · ·+kr)+· · ·+k1k2 · · · kr−1. Proceeding
in the same way, the cardinality of maximal independent set I(Mi)
which contains the ideals multiple of pi is |I(Mi)| = ki + ki(k1 + · · ·+
ki−1 + ki+1 · · · + kr) + · · · + k1k2 · · · kr − 1. The largest independent
set is obtained for maximum value of ki, i = 1, 2, · · · , r. From this, it
is easy to notice that the independence number of CI(Zn) is |I(Mj)|,
where j is corresponding to maximum value of kj, j = 1, 2, · · · , r. �

Theorem 3.2. For an artinian ring R that has a unique minimal ideal,
α(CI(R)) = max{|I(M)| : M is a maximal ideal of R}.

Proof. For any two ideals I, I ′ ⊆M , M is a maximal ideal of R; I−I ′ is
not an edge in CI(R) as I+I ′ 6= R. So I(M), the set of ideals contained
in a maximal ideal M of R is an independent set. Also for any ideal
J 6⊆ I(M), J−M is an edge in CI(R), so J∪I(M) is not an independent
set. Therefore, I(M) is a maximal independent set in CI(R). Hence
α(CI(R)) = max{|I(M)| : M is a maximal ideal of R}. �

Theorem 3.3. For an artinian ring R with a unique minimal ideal,
|I(J(R))| ≤ γ(CI(R)) ≤ |I(J(R)) ∪Max(R)|.

Proof. If R is a local ring, then CI(R) is totally a disconneted graph
and J(R) = M . Hence γ(CI(R)) = |I(J(R))|. Suppose R is a non
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local ring. Since R has unique minimal ideal, say m, so it is con-
tained in every maximal ideal. So m ⊆ J(R). Since a dominat-
ing set must contains all the isolated vertices, so by Corollary 2.3,
a dominating set of CI(R) contains at least |I(J(R))| vertices. So
|I(J(R))| ≤ γ(CI(R)). Again for any ideal I 6⊆ I(J(R)), there exist
a maximal ideal M such that I 6⊆ M . This implies I −M is an edge.
So the set {I(J(R)) ∪ Max(R)} of ideals form a dominating set for
CI(R). Hence γ(CI(R)) ≤ |I(J(R)) ∪Max(R)|. �

In [19], Proposition 1 states: ”A dominating set S of G is a global
dominating set if and only if for each v ∈ V − S, there exists a u ∈ S
such that u is not adjacent to v”. Using this proposition, we establish
the following result.

Theorem 3.4. For an artinian ring R with a unique minimal ideal,
|I(J(R))| ≤ γg(CI(R)) ≤ |I(J(R)) ∪Max(R)|.
Proof. Let D be a minimum dominating set of CI(R). Then D contains
vertices I ⊆ J(R), as these are isolated vertices in CI(R) by Corollary
2.3. Hence by Proposition 1 in [19], D is a global dominating set of
CI(R). Thus the result. �

Theorem 3.5. If R = R1 × R2; where Ri is not a field for i = 1, 2,
then γ(CI(R)) = 2 + |I(J(R))|.
Proof. Since R = R1×R2, so any ideal I of R is of the form I = I1×I2
where Ii is an ideal of Ri; i = 1, 2. The maximal ideals of R are M1×R2

and R1 × M2, where Mi is a maximal ideal in Ri for i = 1, 2. The
minimal ideals of R are m1×0 and 0×m2, where mi is a minimal ideal
in Ri for i = 1, 2. Now J(R) = M1×M2 and Min(R) ⊆ J(R). Observe
that any ideal I 6⊆ J(R) has the form I1×R2 or R1× I2, where Ii ⊆ Ri

for i = 1, 2. So I1×R2 is dominated by R1×M2 and R1×I2 is dominated
by M1 × R2. Hence the ideals that are not contained in J(R) are
dominated by two ideals. Also the induced subgraph < I >; I 6⊆ J(R),
is not a complete subgraph. Thus γ(CI(R)) = 2 + |I(J(R))|. �

Theorem 3.6. If R = R1 × R2; where Ri is not a field for i = 1, 2,
then γg(CI(R)) = 2 + |I(J(R))|.

In [13], Proposition 4.1 states: ”For any graph G, d(G) ≤ δ(G) + 1”.
Again in [19], Proposition 11 (ii) states: ”For any graph G of order
p, dg(G) ≤ d(G)”. Using these two results we obtain the following
theorem.

Theorem 3.7. If R = R1 × R2; where Ri is not a field for i = 1, 2,
then d(CI(R)) = dg(CI(R)) = 1.
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Theorem 3.8. If R = R1 × F , where R1 is a ring and F is a field,
then γ(CI(R)) = 1 + |I(J(R))|.

Proof. The maximal ideals of R are M1 × F and R1 × 0, where M1 is
a maximal ideal in R1. Again the minimal ideals of R take the form
m1 × 0, where m1 is a minimal ideal of R1. Also any non zero ideal
I ⊆M1 × F that is not contained in J(R) is adjacent to R1 × 0. This
implies the maximal ideal R1 × 0 dominates all the ideals that are not
contain in J(R). Hence γ(CI(R)) = 1 + |I(J(R))|. �

Theorem 3.9. If R = R1 × F ; R1 is a ring and F is a field, then
γg(CI(R)) = 1 + |I(J(R))|.

Theorem 3.10. If R = R1 × F ; R1 is a ring and F is a field, then
d(CI(R)) = dg(CI(R)) = 1.

Theorem 3.11. If R = F1 × F2; where Fi is a field for i = 1, 2, then
γ(CI(R)) = 2.

Proof. Here R has only two non trivial ideals F1× 0 and 0×F2, which
are maximal as well as minimal. Hence by Theorem 2.1 and Theorem
3.3, γ(CI(R)) = 2. �

Theorem 3.12. If R = F1 × F2; where Fi is a field for i = 1, 2, then
γg(CI(R)) = 2.

Theorem 3.13. If R = F1 × F2; where Fi is a field for i = 1, 2, then
d(CI(R)) = dg(CI(R)) = 1.

Theorem 3.14. If R = F1×F2×F3×F4× · · · ×Fn; n ≥ 3, where Fi

is a field for i = 1, 2, ...n, then γ(CI(R)) = 2n− 1.

Proof. Any ideal of R is of the form I = I1 × I2 × I3 × · · · × In,
where Ii is an ideal of Ri for i = 1, 2, ...n. The maximal ideals of
R are Mi =

∏n
i=1 Fi with Fi = 0. For an ideal mi =

∏n
j=1 Fj with

Fj = 0 if i 6= j, we have mi + Mj 6= R and mi + Mi = R but mi ∩
Mi = 0. This implies that mi is an isolated vertex of CI(R). Now
let us consider the ideal mi,j =

∏n
k=1 Fk with Fk 6= 0 if k = i, j.

Then mi,j is dominated by Mi and Mj only. This asserts that the set
{m1,m2, · · ·mn,M1,M2, · · · ,Mn−1} forms a minimum dominating set
for CI(R). Hence γ(CI(R)) = 2n− 1. �

Theorem 3.15. If R = F1 × F2 × F3 × F4 × · · · × Fn; n ≥ 3 and Fi is
a field for i = 1, 2, ...n, then γg(CI(R)) = 2n− 1.

Theorem 3.16. If R = F1 × F2 × F3 × F4 × · · · × Fn; n ≥ 3 and Fi is
a field for i = 1, 2, ...n, then d(CI(R)) = dg(CI(R)) = 1.
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Theorem 3.17. If J(R) 6= 0, then

ω(CI(R)) = χ(CI(R)) = |Max(M)|.

Theorem 3.18. If R is an artinian ring with unique minimal ideal,
then ω(CI(R)) = χ(CI(R)) = |Max(M)|.

Proof. Consider an ideal I which is contained in a maximal ideal M ,
say. If we take another ideal I ′ such that I ′ ⊆ M , then they are not
adjacent as I + I ′ 6= R. So the vertex set of a complete subgraph of
CI(R) can contain atmost one vertex from each |I(M)| of R. That is
a complete subgraph of CI(R) can contain atmost |Max(R)| vertices.
This implies ω(CI(R)) ≤ |Max(M)|. Again Max(R) forms a complete
subgraph of CI(R). Hence ω(CI(R)) = |Max(M)|. Again the induced
subgraph < Max(R) > is a complete subgraph of CI(R). So we need
at least |Max(R)| colours to colour the graph such that no two adjacent
vertices have the same colour. This implies |Max(M)| ≤ χ(CI(R)).
Also for any two ideals I, J ⊆ M ∈ Max(R), we have I − J not an
edge. Hence χ(CI(R)) = |Max(M)|. This completes the proof. �
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