Journal of Algebra and Related Topics

Vol. 12, No 1, (2024), pp 147-157

COMAXIMAL INTERSECTION GRAPH OF IDEALS OF RINGS

M. M. ROY, M. BUDHRAJA, AND K. K. RAJKHOWA *

Abstract

The comaximal intersection graph $C I(R)$ of ideals of a ring R is an undirected graph whose vertex set is the collection of all non-trivial (left) ideals of R and any two vertices I and J are adjacent if and only if $I+J=R$ and $I \cap J \neq 0$. We study the connectedness of $C I(R)$. We also discuss independence number, clique number, domination number, chromatic number of $C I(R)$.

1. Introduction

In the past decade, many researchers have studied the interplay between ring structure and graph structure. They defined graphs whose vertices are elements in a ring or are ideals in the ring and edges are defined with respect to certain conditions on the elements of the vertex set. This idea was initially conceived by Beck[10] in 1988, where he introduced the zero-divisor graph $\Gamma(R)$ for a commutative ring R, whose vertex set is the set of elements in R, and two distinct vertices x and y are adjacent if and only if $x y=0$. After that, a lot of work was done in this area. In 1999, Anderson and Livingston in [3] modified the zero-divisor graph $\Gamma(R)$ by taking the vertex set as the set of non-zero zero-divisors of R . This modified graph $\Gamma(R)$ has better graph structure than the previous one. For more details about this graph one can refer to [2]. In 2011, Behboodi and Rakeei [15] defined a new graph called the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ on a commutative ring R, where they used non-zero proper ideals as vertices instead of non-zero

[^0]zero divisors of the ring. For more details about this graph one can refer to $[7,8,15,16]$.

In the year 1995, Sharma and Bhatwadekar [19] introduced a graph $\Omega(R)$ on a commutative ring R , whose vertex set is the set of elements of R and two distinct vertices x, y are adjacent if and only if $R x+$ $R y=R$. In 2008, Maimani et al. [9] modified this graph by taking vertex set consists of non-unit elements of R and named this graph as the co-maximal graph of R. In 2012, Ye and Wu [18] introduced the graph $C(R)$, the co-maximal ideal graph on a commutative ring R with identity, whose vertices are the proper ideals of R that are not contained in the Jacobson radical of R, and two vertices I_{1} and I_{2} are adjacent if and only if $I_{1}+I_{2}=R$. Using the complement concept of this graph, Barman and Rajkhowa[1] introduced the non-comaximal graph of ideals of a ring R, whose vertex set is the collection of all non-trivial (left) ideals of R and any two distinct vertices I and J are adjacent if and only if $I+J \neq R$. They denoted this graph by $N C(R)$.

In 2009, Chakrabarty et al. [11] introduced the intersection graph of ideals of rings, denoted by $G(R)$, whose vertex set is the set of nontrivial left ideals of R and any two vertices I, J are adjacent if and only if $I \cap J \neq 0$. Utilising this insight, Rajkhowa and Saikia [13] introduced the prime intersection graph of ideals of a ring $G(R)$ by imposing one additional condition on the adjacency of two vertices I, J that one of I or J must be a prime ideal of R. For more details about intersection graph of ideals one can refer to [11, 13, 21, 22].

In this paper, we combine two concepts, the co-maximal ideal graph and the intersection graph of ideals of a ring and define a new graph called comaximal intersection graph $C I(R)$ of ideals of a ring R, whose vertex set is the collection of all non-trivial (left) ideals of R and two vertices I and J are adjacent if and only if $I+J=R$ and $I \cap J \neq 0$.

By G, we mean an undirected simple graph with the vertex set $V(G)$, unless otherwise mentioned. A walk in G is an alternating sequence of vertices and edges, $v_{0} e_{1} v_{1} \cdots e_{n} v_{n}$, where each edge $e_{i}=v_{i-1} v_{i}$. If the beginning and the ending vertices of a walk are same then the walk is called a closed walk. In a walk, if all the vertices are distinct, it is called a path. A circuit is a closed walk in which all the vertices are distinct. The total number of edges in a circuit is called the length of the circuit. The length of a smallest circuit in G is called the girth of G and is denoted by $\operatorname{girth}(G)$. If G does not contain a circuit
then $\operatorname{girth}(G)=\infty$. G is called a connected graph if for any two distinct vertices there is a path connecting them. A graph which is not a connected graph is called a disconnected graph. A graph that does not contain any edge is called a totally disconnected graph. In a connected graph G, the distance $d(u, v)$ between two vertices u and v is the length of the shortest $u v$-path in G. The greatest distance between any two vertices u and v in G is called the diameter of G and denoted by $\operatorname{diam}(G)$. If G is not connected then $\operatorname{diam}(G)=\infty$. The complement graph of G denoted by \bar{G} is the graph with vertex set $V(G)$ such that two vertices are adjacent in \bar{G} if and only if they are not adjacent in $G . G$ is called a complete graph if every two distinct vertices in G are adjacent. A clique is a complete subgraph of G. The clique number of G, denoted by $\omega(G)$, is the cardinality of the maximum clique of G. If, in a set of vertices of G, no two vertices are mutually adjacent then it is called an independent set. The independence number of a graph G is the cardinality of a maximum independent set and is denoted by $\alpha(G)$. The chromatic number of G, denoted by $\chi(G)$ is the minimum number of colors assigning to the vertices of G so that no two adjacent vertices have the same color. The graph G is weakly perfect if $\omega(G)=\chi(G)$. A set D of vertices in G is called a dominating set of G if every vertex which is not in D is adjacent to at least one vertex in D. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. A set D is called a global dominating set of G if it is a dominating set for both the graphs G and its complement \bar{G}. The minimum cardinality of a global dominating set is called the global domination number of G and is denoted by $\gamma_{g}(G)$. The domatic number of a graph G is the maximum order of partitions of vertices of G into disjoint dominating sets and is denoted by $d(G)$. The global domatic number of a graph G, denoted by $d_{g}(G)$ is equal to the maximum order of partitions of vertices into disjoint global dominating sets. Any undefined terminology can be obtained in [5, 6, 20]

Henceforth, R denotes a commutative with multiplicative identity unless otherwise specified. R is called local if it has a unique maximal ideal. R is said to be an artinian ring if every descending chain of ideals in R is stationary. A UFD is an integral domain in which every nonzero non-unit element can be written as a product of prime elements, uniquely up to order and units. R is said be an essential extension of an ideal I if for every non-zero ideal J of $R, I \cap J \neq 0$. Any undefined terminologies are available in $[12,14,17]$. In this paper, $J(R)$ is the Jacobson radical, $\operatorname{Min}(R)$ set of minimal ideals, $\operatorname{Max}(R)$
set of maximal ideals of R and $I(M)$, set of ideals of R contained in the maximal ideal M.

2. Connectedness of $\mathrm{CI}(\mathrm{R})$

In this section, connectedness of $C I(R)$ is discussed. This section also contains results on diameter and girth. In [1], Theorem 2.3. states: " $N C(R)$ is totally disconnected if and only if every non-trivial ideal of R is maximal as well as minimal". In the following theorem, we establish the similar result for $C I(R)$.

Theorem 2.1. $C I(R)$ is totally disconnected if and only if R is local or every non-trivial ideal of R is maximal (as well as minimal).
Proof. Assume that $C I(R)$ is totally disconnected. Take two vertices I, J of $C I(R)$. Then either $I+J \neq R$ or $I \cap J=0$. If $I+J \neq R$, then $I+J \varsubsetneqq M, M$ is a maximal ideal of R. In this case, $I \subseteq M$, $J \subseteq M$ and so R is local. Also if $I \cap J=0$, then there is nothing to prove whenever R is local. Assume that both I and J are not maximal. If I is not maximal, then we have a maximal ideal N such that $I \varsubsetneqq N$. So $J+N=R$ will imply that $I=N$, as $I+J=R$. But this is a contradiction since N is a maximal ideal. Hence every ideal is maximal.

Theorem 2.2. There is an isolated vertex I in $C I(R)$ if and only if I is contained in every maximal ideal of R or $I \cap M=0$.

Proof. If there exists an ideal I which is contained in every maximal ideal of R, then it is easy to notice that I is an isolated vertex in $C I(R)$. Similarly if there exists an ideal I which is not contained in a maximal ideal M of R with $I \cap M=0$, then also I is an isolated vertex in $C I(R)$. For the converse part, if there exists an isolated vertex I in $C I(R)$ which is not contained in a maximal ideal M, then $I+M=R$. Thus $I \cap M=0$. Hence the theorem.

Corollary 2.3. The ideals contained in $J(R)$ are isolated vertices in $C I(R)$.

Theorem 2.4. If R is an artinian ring, every ideal in $\operatorname{Min}(R)$ is an isolated vertex of $C I(R)$.
Proof. Let I be a minimal ideal in R. Then for any non-trivial ideal J of R, either $I \cap J=0$ or $I \cap J \neq 0$. If $I \cap J \neq 0$ then $I \cap J=I \subseteq J$ and so $I+J=J \neq R$.

Theorem 2.5. Let R be a finite UFD. Then $C I(R)$ is disconnected if and only if $C I(R)$ has an isolated vertex.

Proof. Assume that $C I(R)$ is disconnected and $p_{1}, p_{2}, \cdots, p_{r}, r \geq 1$ are the r number of prime elements of R. If $k_{1}, k_{2}, \cdots, k_{r}$ are the maximum exponents of $p_{1}, p_{2}, \cdots, p_{r}$ respectively, then $\left(p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{r}^{j_{r}}\right)$, $1 \leq j_{l} \leq k_{l}, l=1,2, \cdots, r$ is an isolated vertex.

Theorem 2.6. If R is an essential extension of each of the non-zero ideals of R, then $C I(R)$ is connected if and only if R is not a local ring.

Proof. Assume that R is not a local ring. If I and J are two non-zero ideals of R, then I and J will be contained in M_{1} and M_{2} respectively, where M_{1} and M_{2} are two maximal ideals of R. If $M_{1}=M_{2}$, then there is another maximal ideal M and so $I-M-J$ is a path between I and J, as $I \cap M \neq 0, J \cap M \neq 0$. Moreover, if $M_{1} \neq M_{2}$, then $I-M_{2}-M_{1}-J$ is a path between I and J, as R is an essential extension of each of the non-zero left ideals of R. In the opposite direction, by contrary assume that R is local. But then $C I(R)$ is a disconnected graph, in fact a totally disconnected graph by Theorem 2.1. This completes the proof.

In [22], Theorem 2.4 states: "For a ring R, the co-maximal ideal graph $\mathcal{C}(R)$ is a simple, connected graph with diameter less than or equal to three". We have established a similar result in the following theorem.

Theorem 2.7. Let R be an essential extension of each of the non-zero ideals of R, then $\operatorname{diam}(C I(R)) \leq 3$ or ∞.

Proof. Suppose that $C I(R)$ is connected. Let I and J be any two ideals of R. If I and J are adjacent, then $\operatorname{diam}(C I(R))<3$. If I and J are not adjacent, then either $I+J \neq R$ or $I \cap J=0$. Since R is an essential extension of each of the non-zero ideals of R, so we must have $I+J \neq R$. This implies I and J are not maximal ideals of R. Let $I \subset M_{1}$ and $J \subset M_{2}$, where M_{1} and M_{2} are maximal ideals of R. If $M_{1}=M_{2}$, then there is another maximal ideal M and so $I-M-J$ is a path between I and J, as $I \cap M \neq 0, J \cap M \neq 0$. Moreover, if $M_{1} \neq M_{2}$, then $I-M_{2}-M_{1}-J$ is a path between I and J, as R is an essential extension of each of the non-zero ideals of R. Hence $\operatorname{diam}(C I(R)) \leq 3$. Hence the theorem.

Theorem 2.8. If $J(R) \neq 0$, then $\operatorname{diam}(C I(R))=\infty$.
Theorem 2.9. If $J(R) \neq 0$, then $\operatorname{diam}(\overline{C I(R)}) \leq 2$.
Theorem 2.10. If R is an artinian ring, then $\operatorname{diam}(C I(R))=\infty$.
Theorem 2.11. If R is an artinian ring, then $\operatorname{diam}(\overline{C I(R)}) \leq 2$.

Theorem 2.12. $C I(R)$ is not a complete graph.
Proof. If R is a local ring, then $C I(R)$ is totally disconnected. Assume that R is not a local ring. If $J(R)=0$, then there exist maximal ideals which intersect trivially. Moreover, if $J(R) \neq 0$, then every non-trivial ideal is not maximal. Thus there is a non-trivial ideal which is properly contained in a maximal ideal. In either case, $C I(R)$ is not a complete graph. Hence the theorem.
Theorem 2.13. Let $J(R)$ be a minimal ideal. Then $C I(R)$ contains no circuit if and only if $|\operatorname{Max}(R)| \leq 2$.

Proof. For $|\operatorname{Max}(R)|=1$, it is obvious. Suppose $|\operatorname{Max}(R)|=2$. Our aim is to show $C I(R)$ contains no circuit. On the contrary, suppose $I_{1}-I_{2}-\cdots-I_{n}-I_{1}$ is a circuit in $C I(R)$. Then each I_{i} is contained in a maximal ideal $M_{i}, i=1,2$. Observe that no two ideals I_{i} and I_{i+1} are contained in a single maximal ideal. If this happens, then the corresponding ideals are not adjacent. But it is possible I_{i-1}, I_{i+1} are in same $M_{i}, i=1,2$. Let $I_{i-1}, I_{i+1} \subseteq M_{1}$ and $I_{i} \subseteq M_{2}$. Since $I_{i}-I_{i+1}$ is an edge, so $I_{i+1} \nsubseteq J(R)$. Therefore $I_{i+1}=M_{1}$ as $I_{i+1} \cap J(R)=0$ implies $I_{i}-I_{i+1}$ not an edge. Similarly we will have $I_{i-1}=M_{1}$. Hence $n=2$. Thus $C I(R)$ contains no circuit. Conversely, if $|\operatorname{Max}(R)| \geq 3$, then we get a circuit. The proof is complete.

In [22], Theorem 4.5. shows that $\mathrm{C}(\mathrm{R})$ is a (complete) bipartite graph if and only if R has exactly two maximal ideals. In the following theorems, we also establish the same results.
Theorem 2.14. Let $J(R) \neq 0$. Then $C I(R)$ is a bipartite graph if and only if $|\operatorname{Max}(R)| \leq 2$.

Proof. If $|\operatorname{Max}(R)| \geq 3$, then $M_{1}-M_{2}-M_{3}-M_{1}$ is a cycle of length 3 in $C I(R)$, where $M_{i} \in \operatorname{Max}(R)$. So, $C I(R)$ is not a bipartite graph. If $|\operatorname{Max}(R)|=2$, then from proof of Theorem 2.13; if $C I(R)$ contains a cycle, the length of the cycle should be even as no two ideals I_{i} and I_{i+1} are contained in a single maximal ideal.

Theorem 2.15. Let R be an essential extension of each of the nonzero left ideals of R, then $C I(R)$ is a complete bipartite graph if and only if $|\operatorname{Max}(R)|=2$.
Theorem 2.16. If $J(R) \neq 0$, then $\operatorname{girth}(C I(R)) \leq 4$, whenever $C I(R)$ contains a circuit.
Proof. If $\operatorname{Max}(R)=2$ and $C I(R)$ contains a circuit, then $\operatorname{girth}(C I(R))=$ 4, which can be obtained from the proof of Theorem 2.13 and Theorem 2.14. If $|\operatorname{Max}(R)| \geq 3$, then $M_{1}-M_{2}-M_{3}-M_{1}$ is a circuit, where $M_{i} \in \operatorname{Max}(R), i=1,2,3$.

3. Independence number, CLique number and domination number of $\mathrm{CI}(\mathrm{R})$

In this section, we discuss independence number, clique number, chromatic number, domination number, global domination number and domatic number of $C I(R)$.

In the following theorem, we find the total number of maximal independent sets in $C I\left(Z_{n}\right)$ and the independence number of $C I\left(Z_{n}\right)$. Then we try to generalise the result.

Theorem 3.1. The independence number of $C I\left(Z_{n}\right)$ is $\left|I\left(M_{j}\right)\right|$, where $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ and j is corresponding to maximum value of $k_{j}, j=$ $1,2, \cdots, r$.

Proof. Here $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$. So a maximal independent set of $C I\left(Z_{n}\right)$ is the collection of all ideals which are generated by multiple of $p_{i}, i=$ $1,2, \cdots, r$. There are r maximal independent sets in $C I\left(Z_{n}\right)$. The cardinality of maximal independent set $I\left(M_{1}\right)$ which contains the ideals multiple of p_{1} is $\left|I\left(M_{1}\right)\right|=k_{1}+k_{1}\left(k_{2}+k_{3}+\cdots+k_{r}\right)+k_{1} k_{2}\left(k_{3}+\cdots+k_{r}\right)+$ $\cdots+k_{1} k_{2} \cdots k_{r}-1$. Similarly, the cardinality of maximal independent set $I\left(M_{2}\right)$ which contains the ideals multiple of p_{2} is $\left|I\left(M_{2}\right)\right|=k_{2}+$ $k_{2}\left(k_{1}+k_{3}+\cdots+k_{r}\right)+k_{1} k_{2}\left(k_{3}+\cdots+k_{r}\right)+\cdots+k_{1} k_{2} \cdots k_{r}-1$. Proceeding in the same way, the cardinality of maximal independent set $I\left(M_{i}\right)$ which contains the ideals multiple of p_{i} is $\left|I\left(M_{i}\right)\right|=k_{i}+k_{i}\left(k_{1}+\cdots+\right.$ $\left.k_{i-1}+k_{i+1} \cdots+k_{r}\right)+\cdots+k_{1} k_{2} \cdots k_{r}-1$. The largest independent set is obtained for maximum value of $k_{i}, i=1,2, \cdots, r$. From this, it is easy to notice that the independence number of $C I\left(Z_{n}\right)$ is $\left|I\left(M_{j}\right)\right|$, where j is corresponding to maximum value of $k_{j}, j=1,2, \cdots, r$.

Theorem 3.2. For an artinian ring R that has a unique minimal ideal, $\alpha(C I(R))=\max \{|I(M)|: M$ is a maximal ideal of $R\}$.

Proof. For any two ideals $I, I^{\prime} \subseteq M, M$ is a maximal ideal of $R ; I-I^{\prime}$ is not an edge in $C I(R)$ as $I+I^{\prime} \neq R$. So $I(M)$, the set of ideals contained in a maximal ideal M of R is an independent set. Also for any ideal $J \nsubseteq I(M), J-M$ is an edge in $C I(R)$, so $J \cup I(M)$ is not an independent set. Therefore, $I(M)$ is a maximal independent set in $C I(R)$. Hence $\alpha(C I(R))=\max \{|I(M)|: M$ is a maximal ideal of $R\}$.

Theorem 3.3. For an artinian ring R with a unique minimal ideal, $|I(J(R))| \leq \gamma(C I(R)) \leq|I(J(R)) \cup \operatorname{Max}(R)|$.

Proof. If R is a local ring, then $C I(R)$ is totally a disconneted graph and $J(R)=M$. Hence $\gamma(C I(R))=|I(J(R))|$. Suppose R is a non
local ring. Since R has unique minimal ideal, say m, so it is contained in every maximal ideal. So $m \subseteq J(R)$. Since a dominating set must contains all the isolated vertices, so by Corollary 2.3, a dominating set of $C I(R)$ contains at least $|I(J(R))|$ vertices. So $|I(J(R))| \leq \gamma(C I(R))$. Again for any ideal $I \nsubseteq I(J(R))$, there exist a maximal ideal M such that $I \nsubseteq M$. This implies $I-M$ is an edge. So the set $\{I(J(R)) \cup \operatorname{Max}(R)\}$ of ideals form a dominating set for $C I(R)$. Hence $\gamma(C I(R)) \leq|I(J(R)) \cup \operatorname{Max}(R)|$.

In [5], Proposition 1 states: "A dominating set S of G is a global dominating set if and only if for each $v \in V-S$, there exists a $u \in S$ such that u is not adjacent to $v "$. Using this proposition, we establish the following result.

Theorem 3.4. For an artinian ring R with a unique minimal ideal, $|I(J(R))| \leq \gamma_{g}(C I(R)) \leq|I(J(R)) \cup \operatorname{Max}(R)|$.
Proof. Let D be a minimum dominating set of $C I(R)$. Then D contains vertices $I \subseteq J(R)$, as these are isolated vertices in $C I(R)$ by Corollary 2.3. Hence by Proposition 1 in [5], D is a global dominating set of $C I(R)$. Thus the result.

Theorem 3.5. If $R=R_{1} \times R_{2}$; where R_{i} is not a field for $i=1,2$, then $\gamma(C I(R))=2+|I(J(R))|$.
Proof. Since $R=R_{1} \times R_{2}$, so any ideal I of R is of the form $I=I_{1} \times I_{2}$ where I_{i} is an ideal of $R_{i} ; i=1,2$. The maximal ideals of R are $M_{1} \times R_{2}$ and $R_{1} \times M_{2}$, where M_{i} is a maximal ideal in R_{i} for $i=1,2$. The minimal ideals of R are $m_{1} \times 0$ and $0 \times m_{2}$, where m_{i} is a minimal ideal in R_{i} for $i=1,2$. Now $J(R)=M_{1} \times M_{2}$ and $\operatorname{Min}(R) \subseteq J(R)$. Observe that any ideal $I \nsubseteq J(R)$ has the form $I_{1} \times R_{2}$ or $R_{1} \times I_{2}$, where $I_{i} \subseteq R_{i}$ for $i=1,2$. So $I_{1} \times R_{2}$ is dominated by $R_{1} \times M_{2}$ and $R_{1} \times I_{2}$ is dominated by $M_{1} \times R_{2}$. Hence the ideals that are not contained in $J(R)$ are dominated by two ideals. Also the induced subgraph $<I>; I \nsubseteq J(R)$, is not a complete subgraph. Thus $\gamma(C I(R))=2+|I(J(R))|$.

Theorem 3.6. If $R=R_{1} \times R_{2}$; where R_{i} is not a field for $i=1,2$, then $\gamma_{g}(C I(R))=2+|I(J(R))|$.

In [4], Proposition 4.1 states: "For any graph $G, d(G) \leq \delta(G)+1$ ". Again in [5], Proposition 11 (ii) states: "For any graph G of order $p, d_{g}(G) \leq d(G)$ ". Using these two results we obtain the following theorem.

Theorem 3.7. If $R=R_{1} \times R_{2}$; where R_{i} is not a field for $i=1,2$, then $d(C I(R))=d_{g}(C I(R))=1$.

Theorem 3.8. If $R=R_{1} \times F$, where R_{1} is a ring and F is a field, then $\gamma(C I(R))=1+|I(J(R))|$.

Proof. The maximal ideals of R are $M_{1} \times F$ and $R_{1} \times 0$, where M_{1} is a maximal ideal in R_{1}. Again the minimal ideals of R take the form $m_{1} \times 0$, where m_{1} is a minimal ideal of R_{1}. Also any non zero ideal $I \subseteq M_{1} \times F$ that is not contained in $J(R)$ is adjacent to $R_{1} \times 0$. This implies the maximal ideal $R_{1} \times 0$ dominates all the ideals that are not contain in $J(R)$. Hence $\gamma(C I(R))=1+|I(J(R))|$.
Theorem 3.9. If $R=R_{1} \times F ; R_{1}$ is a ring and F is a field, then $\gamma_{g}(C I(R))=1+|I(J(R))|$.
Theorem 3.10. If $R=R_{1} \times F ; R_{1}$ is a ring and F is a field, then $d(C I(R))=d_{g}(C I(R))=1$.

Theorem 3.11. If $R=F_{1} \times F_{2}$; where F_{i} is a field for $i=1,2$, then $\gamma(C I(R))=2$.
Proof. Here R has only two non trivial ideals $F_{1} \times 0$ and $0 \times F_{2}$, which are maximal as well as minimal. Hence by Theorem 2.1 and Theorem 3.3, $\gamma(C I(R))=2$.

Theorem 3.12. If $R=F_{1} \times F_{2}$; where F_{i} is a field for $i=1,2$, then $\gamma_{g}(C I(R))=2$.
Theorem 3.13. If $R=F_{1} \times F_{2}$; where F_{i} is a field for $i=1,2$, then $d(C I(R))=d_{g}(C I(R))=1$.

Theorem 3.14. If $R=F_{1} \times F_{2} \times F_{3} \times F_{4} \times \cdots \times F_{n} ; n \geq 3$, where F_{i} is a field for $i=1,2, \ldots n$, then $\gamma(C I(R))=2 n-1$.

Proof. Any ideal of R is of the form $I=I_{1} \times I_{2} \times I_{3} \times \cdots \times I_{n}$, where I_{i} is an ideal of R_{i} for $i=1,2, \ldots n$. The maximal ideals of R are $M_{i}=\prod_{i=1}^{n} F_{i}$ with $F_{i}=0$. For an ideal $m_{i}=\prod_{j=1}^{n} F_{j}$ with $F_{j}=0$ if $i \neq j$, we have $m_{i}+M_{j} \neq R$ and $m_{i}+M_{i}=R$ but $m_{i} \cap$ $M_{i}=0$. This implies that m_{i} is an isolated vertex of $C I(R)$. Now let us consider the ideal $m_{i, j}=\prod_{k=1}^{n} F_{k}$ with $F_{k} \neq 0$ if $k=i, j$. Then $m_{i, j}$ is dominated by M_{i} and M_{j} only. This asserts that the set $\left\{m_{1}, m_{2}, \cdots m_{n}, M_{1}, M_{2}, \cdots, M_{n-1}\right\}$ forms a minimum dominating set for $C I(R)$. Hence $\gamma(C I(R))=2 n-1$.

Theorem 3.15. If $R=F_{1} \times F_{2} \times F_{3} \times F_{4} \times \cdots \times F_{n} ; n \geq 3$ and F_{i} is a field for $i=1,2, \ldots n$, then $\gamma_{g}(C I(R))=2 n-1$.

Theorem 3.16. If $R=F_{1} \times F_{2} \times F_{3} \times F_{4} \times \cdots \times F_{n} ; n \geq 3$ and F_{i} is a field for $i=1,2, \ldots n$, then $d(C I(R))=d_{g}(C I(R))=1$.

Theorem 3.17. If $J(R) \neq 0$, then

$$
\omega(C I(R))=\chi(C I(R))=|\operatorname{Max}(M)| .
$$

Theorem 3.18. If R is an artinian ring with unique minimal ideal, then $\omega(C I(R))=\chi(C I(R))=|M a x(M)|$.
Proof. Consider an ideal I which is contained in a maximal ideal M, say. If we take another ideal I^{\prime} such that $I^{\prime} \subseteq M$, then they are not adjacent as $I+I^{\prime} \neq R$. So the vertex set of a complete subgraph of $C I(R)$ can contain atmost one vertex from each $|I(M)|$ of R. That is a complete subgraph of $C I(R)$ can contain atmost $|\operatorname{Max}(R)|$ vertices. This implies $\omega(C I(R)) \leq|\operatorname{Max}(M)|$. Again $\operatorname{Max}(R)$ forms a complete subgraph of $C I(R)$. Hence $\omega(C I(R))=|\operatorname{Max}(M)|$. Again the induced subgraph $<\operatorname{Max}(R)>$ is a complete subgraph of $C I(R)$. So we need at least $|\operatorname{Max}(R)|$ colours to colour the graph such that no two adjacent vertices have the same colour. This implies $|\operatorname{Max}(M)| \leq \chi(C I(R))$. Also for any two ideals $I, J \subseteq M \in \operatorname{Max}(R)$, we have $I-J$ not an edge. Hence $\chi(C I(R))=|\operatorname{Max}(M)|$. This completes the proof.

References

1. B. Barman, and K. K. Rajkhowa, Non-comaximal graph of ideals of a ring, Proc. Indian Acad. Sci. (Math. Sci.), (5) 129 (2019). Pages-76.
2. D. F. Anderson, M. C. Axtell, J. A. Jr. Stickles, Zero-divisor graphs in commutative rings. In: Fontana, M., Kabbaj, S.-E., Olberding, B., Swanson, I., eds., Commutative Algebra, Noetherian and Non-Noetherian Perspectives, New York: Springer-Verlag, (2011). pp. 23-45.
3. D. F. Anderson, P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, J. Algebra,(2)217 (1999) 434-447.
4. E. J. Cockayne, S. T. Hedetniemi, Towards a Theory of Domination in Graphs, Networks (3) 7 (1977), 247-261.
5. E. Sampathkumar, The Global Domination Number of A Graph J. Math. Phy. Sci., (5) 23 (1989), 377-385.
6. F. Harary, Graph Theory. Reading, Massachusetts: Addison-Wesley, 1969.
7. G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, , M. J. Nikmehr, and F. Shaveisi, The Classification of the Annihilating-Ideal Graphs of Commutative Rings, Algebra Colloq. (02) 21 (2014), 249-256.
8. G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. , (5) 43 (2013), 1415-1425.
9. H. R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra, (4) 319 (2008), 1801-1808.
10. I. Beck, Coloring of commutative rings, J. Algebra, (1) 116 (1988), 208-226.
11. I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. (17) 309 (2009), 5381-5392.
12. J. A. Gallian, Contemporary Abstract Algebra. New Delhi, India : Narosa Publishing House, 1999.
13. K. K. Rajkhowa and H. K. Saikia Prime intersection graph of ideals of a ring Proc. Indian Acad. Sci. (Math. Sci.), :(17) 130 (2020).
14. K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules. New York and Basel : MARCEL DEKKER, 1976.
15. M. Behboodi, and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. (04) 10 (2011), 727-739.
16. M. Behboodi, and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. (4) 10 (2011), 741-753.
17. M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra. Reading, Massachusetts: Addison-Wesley , 1969.
18. M. Ye, and TS. Wu, Comaximal ideal graphs of commutative rings, J. Algebra Appl. (06) 11 (2012), 1250114 (14 pages)
19. P. K. Sharma, and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, (1) 176 (1995), 124-127.
20. R. Balkrishnan, K. Ranganathan, A Text Book of Graph Theory. New York: Springer, 2012.
21. S. Akbari, R. Nikandish, and M. J. Nikmehr, Some Results on the Intersection Graphs of Ideals of Rings, J. Algebra Appl. (o4) 12 (2013), 1250200 (13 pages)
22. S. Visweswaran, and P. Vadhel, Some results on a subgraph of the intersection graph of ideals of a commutative ring, J. Algebra Relat. Topics, (2) 6(2018), 35-61.

Moon Moon Roy

Department of Mathematics, Bineswar Brahma Engineering College, P.O.Box 783370, Kokrajhar, India
Email: moonmoon.kalita@gmail.com

Mridula Budhraja

Department of Mathematics, Shivaji College, University of Delhi, P.O.Box 110027, New Delhi, India
Email: mridubudhraja@yahoo.co.in

Kukil Kalpa Rajkhowa

Department of Mathematics, Cotton University, P.O.Box 781001, Guwahati, India Email: kukilrajkhowa@yahoo.com

[^0]: MSC(2010): Primary: 05C25; Secondary: 05C69
 Keywords: Maximal ideal, artinian ring, independence number,domination number. Received: 29 December 2022, Accepted: 19 December 2023.
 $*$ Corresponding author .

