Eski Silahtaraga Elektrik Santrali, Kazim Karabekir, Istanbul Bilgi University
Abstract
For a finite field $\mathbb{F}_q$, the bivariate skew polynomial ring $\mathbb{F}_q[x,y;\rho,\theta]$ has been used to study codes \cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;\rho,\theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(\lambda_1,\lambda_2)$-constacyclic codes in the ring $R[x,y;\rho,\theta]/\langle x^l-\lambda_1,y^s-\lambda_2\rangle_{\mathit{l}}.$ Also, the dual of 2-D skew $(\lambda_1,\lambda_2)$-constacyclic codes is investigated.