Let $R$ be a Krasner hyperring and $M$ be an $R$- hypermodule. Let $\psi: S^{h}(M)\rightarrow S^{h}(M)\cup \{\emptyset\}$ be a function, where $S^{h}(M)$ denote the set of all subhypermodules of $M$. In the first part of this paper, we introduce the concept of a secondary hypermodule over a Krasner hyperring. A non-zero hypermodule $M$ over a Krasner hyperring $R$ is called secondary if for every $r\in R$, $rM=M$ or $r^{n}M=0$ for some positive integer $n$. Then we investigate some basic properties of secondary hypermodules. Second, we introduce the notion of $\psi$-secondary subhypermodules of an $R$-hypermodule and we obtain some properties of such subhypermodules.
Farzalipour, F., & Ghiasvand, P. (2021). On secondary subhypermodules. Journal of Algebra and Related Topics, 9(1), 143-158. doi: 10.22124/jart.2021.18981.1256
MLA
F. Farzalipour; P. Ghiasvand. "On secondary subhypermodules". Journal of Algebra and Related Topics, 9, 1, 2021, 143-158. doi: 10.22124/jart.2021.18981.1256
HARVARD
Farzalipour, F., Ghiasvand, P. (2021). 'On secondary subhypermodules', Journal of Algebra and Related Topics, 9(1), pp. 143-158. doi: 10.22124/jart.2021.18981.1256
VANCOUVER
Farzalipour, F., Ghiasvand, P. On secondary subhypermodules. Journal of Algebra and Related Topics, 2021; 9(1): 143-158. doi: 10.22124/jart.2021.18981.1256