Let $R$ be a commutative ring with identity and $M$ be an $R$-module. It is shown that the usual lattice $\mathcal{V}(_{R}M)$ of varieties of submodules of $M$ is a distributive lattice. If $M$ is a semisimple $R$-module and the unary operation $^{\prime}$ on $\mathcal{V}(_{R}M)$ is defined by $(V(N))^{\prime}=V(\tilde{N})$, where $M=N\oplus \tilde{N}$, then the lattice $\mathcal{V}(_{R}M)$ with $^{\prime}$ forms a Boolean algebra. In this paper, we examine the properties of certain mappings between $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$, in particular considering when these mappings are lattice homomorphisms. It is shown that if $M$ is a faithful primeful $R$-module, then $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$ are isomorphic lattices, and therefore $\mathcal{V}(_{R}M)$ and the lattice $\mathcal{R}(R)$ of radical ideals of $R$ are anti-isomorphic lattices. Moreover, if $R$ is a semisimple ring, then $\mathcal{V}(_{R}R)$ and $\mathcal{V}(_{R}M)$ are isomorphic Boolean algebras, and therefore $\mathcal{V}(_{R}M)$ and $\mathcal{L}(R)$ are anti-isomorphic Boolean algebras.
Fazaeli Moghimi, H., & Noferesti, M. (2022). Mappings between the lattices of varieties of submodules. Journal of Algebra and Related Topics, 10(1), 35-50. doi: 10.22124/jart.2021.19574.1272
MLA
H. Fazaeli Moghimi; M. Noferesti. "Mappings between the lattices of varieties of submodules". Journal of Algebra and Related Topics, 10, 1, 2022, 35-50. doi: 10.22124/jart.2021.19574.1272
HARVARD
Fazaeli Moghimi, H., Noferesti, M. (2022). 'Mappings between the lattices of varieties of submodules', Journal of Algebra and Related Topics, 10(1), pp. 35-50. doi: 10.22124/jart.2021.19574.1272
VANCOUVER
Fazaeli Moghimi, H., Noferesti, M. Mappings between the lattices of varieties of submodules. Journal of Algebra and Related Topics, 2022; 10(1): 35-50. doi: 10.22124/jart.2021.19574.1272