An -module is called torsion-free, if for and implies that or . In this paper, we introduce the notions semi torsion-free modules and quasi torsion-free modules. We show that a submodule of an -module is a -primary submodule if and only if -module is semi torsion-free. Also we define a new radical in free modules and find some characterizations of it. We prove that for -submodule of a free -module which , we have for any and , implies or if and only if -module is quasi torsion free.
Adhami, P. and Moghaderi, J. (2022). A new radical in free modules. Journal of Algebra and Related Topics, 10(1), 71-94. doi: 10.22124/jart.2022.20214.1295
MLA
Adhami, P. , and Moghaderi, J. . "A new radical in free modules", Journal of Algebra and Related Topics, 10, 1, 2022, 71-94. doi: 10.22124/jart.2022.20214.1295
HARVARD
Adhami, P., Moghaderi, J. (2022). 'A new radical in free modules', Journal of Algebra and Related Topics, 10(1), pp. 71-94. doi: 10.22124/jart.2022.20214.1295
CHICAGO
P. Adhami and J. Moghaderi, "A new radical in free modules," Journal of Algebra and Related Topics, 10 1 (2022): 71-94, doi: 10.22124/jart.2022.20214.1295
VANCOUVER
Adhami, P., Moghaderi, J. A new radical in free modules. Journal of Algebra and Related Topics, 2022; 10(1): 71-94. doi: 10.22124/jart.2022.20214.1295