Hypergraph associated with Lie algebra of upper triangular matrices

Document Type : Research Paper

Authors

1 Discrete Mathematics Laboratory, Department of Mathematics Srinivasa Ramanujan Centre, SASTRA Deemed to be University, Kumbakonam, India.

2 Discrete Mathematics Laboratory, Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA Deemed to be University Kumbakonam, India.

Abstract

For an associated combinatorial structure with Lie algebra gn of upper triangular matrices, an allowable, forbidden, and the graphs that are not associated with gn of any three vertices are determined. This work also introduces a neoteric association of hypergraph with Lie algebra of upper triangular matrix Gn for an element of Lie algebra gn. The properties of this structure are analyzed, characterized and have been presented as an algorithm for finite order.

Keywords


  1. K. Akimoto, T. Hiraoka, K. Sadamasa, and M. Niepert Akimoto, Cross-Sentence N-ary Relation Extraction using Lower-Arity Universal Schemas, Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), (2019), 6226-6232.
  2.  B. Bai, L. Wang, Z. Han, W. Chen, and T. Svensson, Caching based socially-aware D2D communications in wireless content delivery networks: A hypergraph framework, IEEE Wireless Communications, (4) 23 (2016), 74-81.
  3.  C. Berge, Hypergraphs North Holland Mathematical Library, Elsevier Science Publishers BV, 1989.
  4.  J. Caceres, M. Ceballos, J. Nu~nez, M. L. Puertas, and A. F. Tenorio, Graph operations and Lie algebras, Int. J. Comput. Math, (10) 90 (2013), 2092-2104.
  5.  A. Carriazo, A and L. M. Fernandez,and J. Nunez, Combinatorial structures associated with Lie algebras of  nite dimension, Linear Algebra Appl., 389 (2014), 43-61.
  6.  M. Ceballos, and J. Nu~nez, and A. F. Tenorio, Combinatorial structures and Lie algebras of upper triangular matrices, Appl. Math. Lett., (3) 25 (2012), 514-519.
  7.  M. Ceballos,J. Nunez, and A. F. Tenorio, Triangular con gurations and Lie algebras of strictly upper-triangular matrices, Appl. Comput. Math., (1) 13 (2014), 62-70.
  8.  M. Ceballos, J. Nunez, and A. F. Tenorio, Relations between combinatorial structures and Lie algebras: centers and derived Lie algebras, Bull. Malays.Math. Sci. Soc., (2) 38 (2015), 529-541.
  9. F. Esmaeili Khalil Saraei, The annihilator graph of modules over commutative rings, J. Algebra Relat. Topics, (1) 9 (2021), 93-108.
  10.  L. M. Fernandez and L. Martn-Martnez, Lie algebras associated with triangular con gurations, Linear Algebra Appl., 407 (2005), 43-63.
  11.  M. Karimi, A graph associated to spectrum of a commutative ring, J. Algebra Relat. Topics, (2) 2 (2014), 11-23.
  12. P.T. Lalchandani, Exact annihilating-ideal graph of commutative rings, J. Algebra Relat. Topics, (1) 5 (2017), 27-23.
  13.  A. Malcev, On solvable Lie algebras, Russian Academy of Sciences, Steklov Mathematical Institute of Russian, (5) 9 (1945), 329-356.
  14.  M. Primc, Basic representations for classical ane Lie algebras, J. Algebra, (1) 228 (2000), 1-50.
  15.  V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Springer Science & Business Media, 102, 2013.
  16. S. Venkatraman, G. Rajaram, and K. Krithivasan, Unimodular hypergraph for DNA sequencing: A polynomial time algorithm, Proc. Nat. Acad. Sci. India Sect. A, (1) 90(2020), 49-56.
  17.  S. Visweswaran and J. Parejiya, A Note on a graph associated to a commutative ring, J. Algebra Relat. Topics, (1) 5 (2017), 61-82.
  18.  J. Yu, D. Tao, and M. Wang, Adaptive hypergraph learning and its application in image classi cation, IEEE Trans. Image Process., (7) 21 (2012), 3262-3272.