d-n-ideals of commutative rings

Document Type : Research Paper

Authors

1 Department of Basic Sciences, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, Turkey

2 Department of Mathematics, Faculty of Science, Gebze Technical University, Gebze, Turkey

Abstract

Let $R$ be a commutative ring with non-zero identity, and $\delta :\mathcal{I(R)}\rightarrow\mathcal{I(R)}$ be an ideal expansion where $\mathcal{I(R)}$ is the set of all ideals of $R$. In this paper, we introduce the concept of $\delta$-$n$-ideals which is an extension of $n$-ideals in commutative rings. We call a proper ideal $I$ of $R$ a $\delta$-$n$-ideal if
whenever $a,b\in R$ with$\ ab\in I$ and $a\notin\sqrt{0}$, then $b\in \delta(I)$. For example, an ideal expansion $\delta_{1}$ is defined by $\delta_{1}(I)=\sqrt{I}.$ In this case, a $\delta_{1}$-$n$-ideal $I$ is said to be a quasi $n$-ideal or equivalently, $I$ is quasi $n$-ideal if $\sqrt{I}$ is an $n$-ideal. A number of characterizations and results with many
supporting examples concerning this new class of ideals are given. In particular, we present some results regarding quasi $n$-ideals. Furthermore, we use $\delta$-$n$-ideals to characterize fields and UN-rings.

Keywords


  1. D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, (1) 1 (2009), 3-56.
  2.  D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, (5) 39 (2011), 1646-1672.
  3.  A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. (3) 75 (2007), 417-429.
  4.  A. Badawi, D. Sonmez and G. Yesilot, On weakly -semiprimary ideals of commutative rings, Algebra Colloq. (3) 25 (2018), 387-398.
  5.  A. Badawi and B. Fahid, On weakly 2-absorbing -primary ideals of commutative rings, Georgian Math. J. (4) 27 (2018), 503-516. DOI: 10.1515/gmj-2018-0070.
  6.  A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., (4) 51 (2014), 1163{1173. DOI:10.4134/JKMS.2015.52.1.097
  7.  G. Calugareanu, UN-rings, Journal of Algebra and Its Applications 15 10 (2016),1650182.
  8.  B. Fahid and D. Zhao, 2-absorbing -primary ideals in commutative rings, Kyungpook Math. J., (2) 57 (2017), 193-198.
  9.  L. Fuchs, On quasi-primary ideals, Acta. Sci. Math. (Szeged), 11 (1947) 174-183.
  10.  R. Gilmer, Multiplicative ideal theory, Queen Papers Pure Appl. Math. 90, Queen's University, Kingston, 1992.
  11.  J. Huckaba, Rings with zero-divisors, Marcel Dekker, NewYork/ Basil,1988.
  12.  N. Jacobson, Basic Algebra II, 2nd ed. New York: W. H. Freeman, 1989.
  13.  A. E., Khal , N. Mahdou and U. Tekir, S. Koc, On 1-absorbing $\sigma$-primary ideals, Analele Stiint. ale Univ. (3) 29 (2021), 135-150.
  14.  R. Mohamadian, r-ideals in commutative rings, Turkish J. Math. (5) 39 (2015), 733-749.
  15.  M. Samiei and H. Fazaeli Moghimi, Weakly irreducible ideals, J. Algebra Relat.Topics, (2) 4 (2016), 9-17.
  16.  U. Tekir, S. Koc and K. H. Oral, K. P. Shum, On 2-absorbing quasi-primary ideals in commutative rings, Commun. Math. Stat. (1) 4 (2016),55-62.
  17.  U. Tekir, S. Koc and K.H. Oral, n-ideals of commutative rings, Filomat, (10)31 (2017) 2933-2941.
  18. G. Ulucak and E. Yetkin Celikel, ($\sigma$, 2)-primary ideals of a commutative ring, Czechoslov. Math. J, (4) 70 (2020), 1-12.
  19.  G. Ulucak, U. Tekir and S. Koc, On n-absorbing -primary ideals, Turkish J.Math., (4) 42 (2018),1833-1844.
  20.  S. Visweswaran and A. Parmar, A note on maximal non-prime ideals, J. Algebra Relat. Topics, (1) 3 (2015), 51-61.
  21.  D. Zhao, $\sigma$-primary ideals of commutative rings, Kyungpook Math. J., 41 (2001),17-22.