Let be a simple graph. A set of vertices is an identifying set of if for every two vertices and belong to the sets and are non-empty and different. Given a graph the smallest size of an identifying set of is called the identifying code number of and is denoted by Two vertices and are twins when Graphs with at least two twin vertices are not identifiable graphs. In this paper, we present three bounds for identifying code number.
D. Auger, Minimal identifying codes in trees and planar graphs with large girth, European J. Combin. (5) 31 (2010), 1372-84.
J. Amjadi , S. Nazari-Moghaddam , SM. Sheikholeslami, L. Volkmann, Total roman domination number of trees, Australas. J. Combin. (2) 69 (2017), 271-85.
N. Biggs, Algebraic graph theory. Cambridge university press, Cambridge, 1993.
C. Chen, C. Lu , Z. Miao, Identifying codes and locatingdominating sets on paths and cycles, Discrete Appl. Math, (15) 159 (2011), 1540-7.
F. Foucaud, E. Guerrini , M. Kovse, R. Naserasr, A. Parreau, and P. Valicov, Extremal graphs for the identifying code problem. European J. Combin. (4) 32 (2011), 628-638.
F. Foucaud , R. Klasing, A. Kosowski, A. Raspaud, On the size of identifying codes in triangle-free graphs, Discrete Appl. Math, (10-11) 160 (2012), 1532-46.
A. Frieze , R. Martin, J. Moncel, M. Ruszinke, C. Smyth, Codes identifying sets of vertices in random networks, Discrete Math. (9-10) 307 (2007), 1094-107.
S. Gravier, J. Monce, A. Semri, Identifying codes of cycles, European J. Combin. (5) 27 (2006), 767-76.
C. Godsil, GF. Royle, Algebraic graph theory, Springer Science & Business Media; 2001 Apr 20.
I. Honkala, T. Laihonen, On identifying codes in the triangular and square grids, SIAM J. Comput. (2) 33 (2004), 304-12.
MG. Karpovsky, K. Chakrabarty, LB. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inf. Theory, (2) 44 (1998),599-611.
Z. Mansouri, DA. Mojdeh, Outer independent rainbow dominating functions in graphs, Opuscula Math. (5) 40 (2020), 599-615.
F. Ramezani , ED. Rodriguez-Bazan, JA. Rodriguez-Velazquez, On the roman domination number of generalized Sierpinski graphs, Filomat, (20) 31 (2017), 6515-6528.
A. Shaminezhad , E. Vatandoost, On 2-rainbow domination number of functigraph and its complement, Opuscula Math. (5) 40 (2020), 617-627.
Vatandoost, E. and Mirasheh, K. (2022). Three Bounds For Identifying Code Number. Journal of Algebra and Related Topics, 10(2), 61-67. doi: 10.22124/jart.2022.20661.1321
MLA
Vatandoost, E. , and Mirasheh, K. . "Three Bounds For Identifying Code Number", Journal of Algebra and Related Topics, 10, 2, 2022, 61-67. doi: 10.22124/jart.2022.20661.1321
HARVARD
Vatandoost, E., Mirasheh, K. (2022). 'Three Bounds For Identifying Code Number', Journal of Algebra and Related Topics, 10(2), pp. 61-67. doi: 10.22124/jart.2022.20661.1321
CHICAGO
E. Vatandoost and K. Mirasheh, "Three Bounds For Identifying Code Number," Journal of Algebra and Related Topics, 10 2 (2022): 61-67, doi: 10.22124/jart.2022.20661.1321
VANCOUVER
Vatandoost, E., Mirasheh, K. Three Bounds For Identifying Code Number. Journal of Algebra and Related Topics, 2022; 10(2): 61-67. doi: 10.22124/jart.2022.20661.1321