Let $R$ be a commutative ring with identity and $M$ be an $R$-module. The main purpose of this paper is to introduce and investigate the notion of classical and strongly classical $n$-absorbing second submodules as a dual notion of classical $n$-absorbing submodules. We obtain some basic properties of these classes of modules.
Khojasteh, S. (2022). Classical and strongly classical $n$-absorbing second submodules. Journal of Algebra and Related Topics, 10(2), 69-88. doi: 10.22124/jart.2022.22231.1401
MLA
S. Khojasteh. "Classical and strongly classical $n$-absorbing second submodules". Journal of Algebra and Related Topics, 10, 2, 2022, 69-88. doi: 10.22124/jart.2022.22231.1401
HARVARD
Khojasteh, S. (2022). 'Classical and strongly classical $n$-absorbing second submodules', Journal of Algebra and Related Topics, 10(2), pp. 69-88. doi: 10.22124/jart.2022.22231.1401
VANCOUVER
Khojasteh, S. Classical and strongly classical $n$-absorbing second submodules. Journal of Algebra and Related Topics, 2022; 10(2): 69-88. doi: 10.22124/jart.2022.22231.1401