Let be a commutative ring with identity and be an -module. The main purpose of this paper is to introduce and investigate the notion of classical and strongly classical -absorbing second submodules as a dual notion of classical -absorbing submodules. We obtain some basic properties of these classes of modules.
D. F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
H. Ansari-Toroghy, F. Farshadifar, Classical and strongly classical 2-absorbing second submodules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., (1) 69 (2020), 123-136.
H. Ansari-Toroghy, F. Farshadifar, On the dual notion of prime radicals of submodules, Asian Eur. J. Math., (2) 6 (2013), 1350024.
H. Ansari-Toroghy, F. Farshadifar, Some generalizations of second submodules, Palest. J. Math., (2) 8 (2019), 1-10.
H. Ansari-Toroghy, F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., (4) 11 (2007), 1189-1201.
H. Ansari-Toroghy, F. Farshadifar, The dual notion of some generalizations of prime submodules, Comm. Algebra, 39 (2011), 2396-2416.
H. Ansari-Toroghy, F. Farshadifar, S. Maleki-Roudposhti, n-absorbing and strongly n-absorbing second submodules, Bol. Soc. Parana. Mat., (1) 39 (2021), 9-22.
H. Ansari-Toroghy, F. Farshadifar, S. S. Pourmortazavi, On the P-interiors of submodules of Artinian modules, Hacet. J. Math. Stat., (3) 45 (2016), 675-682.
A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
A. Barnard, Multiplication modules, J. Algebra, 71 (1981), 174-178.
S. Ceken, M. Alkan, P.F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265-275.
A. Y. Darani, F. Soheilnia, On n-absorning submodules, Math. Commun., 17 (2012), 547-557.
J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
L. Fuchs, W. Heinzer, B. Olberding, Commutative ideal theory without niteness conditions: Irreducibility in the quotient eld, in : Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121-145.
N. Groenewaldon, Principally right 2-absorbing primary and weakly 2-absorbing primary ideals, J. Algebra Relat. Topics, (1) 9 (2021), 47-67.
I. Kaplansky, Commutative rings, University of Chicago Press, 1978.
R. Nikandish, M. J. Nikmehr, A. Yassine, On classical n-absorbing submodules, Le Matematiche, (2) 74 (2019), 301-320.
P. Quartararo, H. S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc., 52 (1975), 91-96.
S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37(2001), 273-278.
S. Yassemi, The dual notion of the cyclic modules, Kobe. J. Math., 15 (1998), 41-46.
Khojasteh, S. (2022). Classical and strongly classical -absorbing second submodules. Journal of Algebra and Related Topics, 10(2), 69-88. doi: 10.22124/jart.2022.22231.1401
MLA
Khojasteh, S. . "Classical and strongly classical -absorbing second submodules", Journal of Algebra and Related Topics, 10, 2, 2022, 69-88. doi: 10.22124/jart.2022.22231.1401
HARVARD
Khojasteh, S. (2022). 'Classical and strongly classical -absorbing second submodules', Journal of Algebra and Related Topics, 10(2), pp. 69-88. doi: 10.22124/jart.2022.22231.1401
CHICAGO
S. Khojasteh, "Classical and strongly classical -absorbing second submodules," Journal of Algebra and Related Topics, 10 2 (2022): 69-88, doi: 10.22124/jart.2022.22231.1401
VANCOUVER
Khojasteh, S. Classical and strongly classical -absorbing second submodules. Journal of Algebra and Related Topics, 2022; 10(2): 69-88. doi: 10.22124/jart.2022.22231.1401