Construction of symmetric pentadiagonal matrix from three interlacing spectrum

Document Type : Research Paper

Authors

1 Department of Mathematics, Sahand University of Technology, Tabriz, IRAN

2 Department of Mathematics, Sahand University of Technology, Tabriz, Iran

Abstract

‎In this paper‎, ‎we introduce a new algorithm for constructing a‎ ‎symmetric pentadiagonal matrix by using three interlacing spectrum‎, ‎say $(\lambda_i)_{i=1}^n$‎, ‎$(\mu_i)_{i=1}^n$ and $(\nu_i)_{i=1}^n$‎ ‎such that‎
‎\begin{eqnarray*}‎
‎0<\lambda_1<\mu_1<\lambda_2<\mu_2<...<\lambda_n<\mu_n,\\‎
‎\mu_1<\nu_1<\mu_2<\nu_2<...<\mu_n<\nu_n‎,
‎\end{eqnarray*}‎
‎where $(\lambda_i)_{i=1}^n$ are the eigenvalues of pentadiagonal‎ ‎matrix $A$‎, ‎$(\mu_i)_{i=1}^n$ are the eigenvalues of $A^*$ (the‎   ‎matrix $A^*$ differs from $A$ only in the $(1,1)$ entry) and‎ ‎$(\nu_i)_{i=1}^n$ are the eigenvalues of $A^{**}$ (the matrix‎ ‎$A^{**}$ differs from $A^*$ only in the $(2,2)$ entry)‎. ‎From the‎
‎interlacing spectrum‎, ‎we find the first and second columns of‎ ‎eigenvectors‎. ‎Sufficient conditions for the solvability of the problem‎ ‎are given‎. ‎Then we construct the pentadiagonal matrix $A$ from these‎ ‎eigenvectors and given eigenvalues by using the block Lanczos algorithm‎. ‎We‎ ‎also give an example to demonstrate the efficiency of the algorithm‎.

Keywords


  1. V. Barcilon, Inverse problems for a vibrating beam, J. Math. Phys., 27 (1976), 346-358.
  2.  V. Barcilon, On the multiplicity of solutions of the inverse problem for a vibrating beam, SIAM J. Appl. Math, 37 (1979), 605-613.
  3.  V. Barcilon, Inverse problems for the vibrating beam in the free-clamped con guration, Philos. Trans. R. Soc. London Ser. AMath. Phys. Eng. Sci., 304 (1982), 211-252.
  4.  D. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Probl., 3 (1987), 595-622.
  5.  M.T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), 1-39.
  6.  M.T. Chu, F. Diele and S. Ragni, On the inverse problem of constructing symmetric pentadiagonal Toeplitz matrices from their three largest eigenvalues, Inverse Probl., 21 (2005) 1879-1894.
  7.  M.T. Chu and G.H. Golub, Structured inverse eigenvalue problems, Acta Numer., 11 (2002) 1-71.
  8.  C. de Boor and G.H. Golub, The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl., 21 (1978) 245-260.
  9. K. Ghanbari and H. Mirzaei, Inverse eigenvalue problem for pentadiagonal matrix, Inverse Probl. Sci. En., 22 (2014), 530-542.
  10.  G.M.L. Gladwell, The inverse problem for the vibrating beam, Philos. Trans. R. Soc. London Ser. AMath. Phys. Eng. Sci., 393 (1984) 277-295.
  11.  G.M.L. Gladwell, Inverse problems in vibration, Dordrecht: Kluwer Academic Publishers, 2004.
  12.  J. Li, L. Dong and G. Li, A class of inverse eigenvalue problems for real symmetric banded matrices with odd bandwidth, Linear Algebra Appl., 541 (2018) 131-162.
  13.  H. Mirzaei and K. Ghanbari, Construction of H-Symmetric pentadiagonal matrices by three spectra, Appl. Math. Sci. Eng., 30 (2022), 61-74.
  14.  M.R. Moghaddam, H. Mirzaei and K. Ghanbari, On the generalized inverse eigenvalue problem of constructing symmetric pentadiagonal matrices from three mixed eigendata, Linear Multilinear A., 63 (2015), 1154-1166.
  15.  H.K. Monfared and B.L. Shader, Construction of matrices with a given graph and prescribed interlaced spectral data, Linear Algebra Appl., 438 (2013), 4348-4358.