n-Super finitely copresented and n-weak projective modules

Document Type : Research Paper

Author

Department of Mathematics, University of Payame Noor, Tehran, Iran

Abstract

Let $R$ be a  ring and $n$ a non-negative integer. In this paper,  we first introduce the concept of $n$-super finitely copresented  $R$-modules and via these modules, we give a concept of $n$-weak projective modules and investigate some characterizations of these modules over any arbitrary ring. For example, we obtain that ($\mathcal{WP}^{n}(R), \mathcal{WP}^{n}(R)^{\bot}$) is a perfect hereditary cotorsion theory and for any $N\in \mathcal{WP}^n(R)^{\bot}$, there exists an $n$-weak projective cover with the unique mapping property if and only if every $R$-module is  $n$-weak projective.

Keywords


  1. M. Amini, H. Amzil and D. Bennis, Category of modules n-weak injective and n-weak  at with respect to special super presented modules, Commun. Algebra, (11) 49 (2021), 4924-4939.
  2.  M. Amini and F. Hasani, Copresented dimension of modules, Iran. J. Math. Sci. Inform, (2) 14 (2019), 153-157.
  3.  D. Bennis, H. Bouzraa and A. Kaed, On n-copresented modules and n-cocoherent rings, Int. Electron. J. Algebra, 12 (2012), 162-174.
  4.  J. L. Chen and N. Ding, A note on existence of envelopes and covers, Bull. Austral. Math. Soc, 54 (1996), 383-390.
  5.  D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (1994), 3997-4011.
  6.  D. E. Dobbs, S. Kabbaj and N. Mahdou, n-Coherent rings and modules, Lect.Notes Pure Appl. Math, 185 (1997), 269-281.
  7.  F. Farshadifar, A generalization of pure submodules, J. Algebra Relat. Topics, 8(2) (2020), 1-8.
  8.  Z. Gao and F. Wang, All Gorenstein hereditary rings are coherent, J. Algebra Appl, 13 (2014), 1350140 (5 pages).
  9.  Z. Gao and F. Wang, Weak injective and weak  at modules, Comm. Algebra, 43 (2015), 3857-3868.
  10.  J. R. Garca Rozas and B. Torrecillas, Relative injective covers, Comm. Algebra, 22 (1994), 2925-2940.
  11.  H. Holm and P. Jrgensen, Cotorsion pairs induced by duality pairs, J. Commut. Algebra, 1 (2009), 621-633.
  12.  M. Kleiner and I. Reiten, Abelian categories, almost split sequences and comodules, Trans. Amer. Math. Soc, (8)357 (2004), 3201-3214.
  13.  H. K. Ng, Finitely presented dimension of commutative rings and modules, Paci c Journal of Mathematics, 113 (1984), 417-431.
  14. J. Rotman, An Introduction to Homological Algebra, Second edition, Universitext, Springer, New York, (2009).
  15.  R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Paris-Montreux-Tokyo-Melbourne, 1991.
  16.  W. Xu, On n-presented modules and almost excellent extensions, Comm. Algebra, (3)27 (1999), 1091-1102.
  17.  J. Zhan, Z. Tan, Finitely copresented and cogenerated dimensions, Int. Indian J. pure appl. math, (6)35 (2004), 771-781.
  18.  T. Zhao, Homological properties of modules with  nite weak injective and weak at dimensions, Int. Bull. Malays. Math. Sci. Soc, 41 (2018),779-805.
  19.  T. Zhao, Z. Gao and Z. Huang, Relative FP-gr-injective and gr- at modules, Int. Algebra and Computation, 28 (2018), 959-977.
  20. Z. Zhu, n-cocoherent rings, n-cosemihereditary rings and n-V -rings, Bull. Iranian Math. Soc, (4)40 (2014), 809-822.