A scheme over quasi-prime spectrum of modules

Document Type: Research Paper


University of Guilan


The notions of quasi-prime submodules and developed  Zariski topology was introduced by the present authors in \cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:=\{Q\in q\Spec(M) \mid (Q:_R M)\in\Spec(R)\}$. It is proved that $(X, \mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $M\rightarrow N$, and also by ring homomorphism $R\rightarrow S$. Among other results, we show that $(X, \mathcal{O}_X)$ is a scheme by putting some suitable conditions on $M$.