Single valued neutrosophic ideals of pseudo MV-algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran

2 Hatef Higher Education Institute, Zahedan, Iran

3 Department of Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University

4 Department of Mathematics Education Gyeongsang National University Jinju 52828, Korea

Abstract

After introducing the concept of single valued neutrosophic ideal in a pseudo MV-algebra, its properties are examined. The various conditions under which a single valued neutrosophic set can be a single valued neutrosophic ideal are examined. Characterizations of a single valued neutrosophic ideal of a pseudo MV-algebra are considered.

Keywords


1. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87{96. http://dx.doi.org/10.1007/978-3-7908-1870-3.
2. R.A. Borzooei, F. Smarandache and Y.B. Jun, Single valued neutrosophic  ltersin pseudo BL-algebras, Neutrosophic Sets and Systems, (submitted).
3. R.A. Borzooei, X.H. Zhang, F. Smarandache and Y.B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, (8) 10 (2018), 350. http://dx.doi.org/10.3390/sym10080350
4. A. Borumand Saeid and Y.B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Annals of Fuzzy Mathematics and Informatics,14 (2017), 87{97. http://dx.doi.org/10.30948/afmi.2017.14.1.87
5. C.C. Chang, Algebraic analysis of many valued logics, Transactions of the American Mathematical Society, 88 (1958), 467-490. http://dx.doi.org/10.1090/S0002-9947-1958-0094302-9
6. A. Dvurecenskij, States on pseudo MV-algebras, Studia Logica, 68 (2001), 301-327.
7. A. Dvurecenskij, On pseudo MV-algebras, Soft Computing, 5 (2001), 347-354. http://dx.doi.org/10.1007/s005000100136.
8. A. Dvurecenskij, Pseudo MV-algebras and lexicographic product, Fuzzy Sets and Systems, 303 (2016), 56-79. http://dx.doi.org/10.1016/j.fss.2015.09.024.
9. A. Dvurecenskij and O. Zahiri, Orthocomplete pseudo MV-algebras, International Journal of General Systems, 45 (2016), 889-909.
10. G. Dymek, Fuzzy maximal ideals of pseudo MV-algebras, Commentationes Mathematicae, 47 (2007), 31-46.
11. G. Georgescu and A. Iorgulescu, Pseudo MV-algebras, Multiple-Valued Logic, 6 (2001), 95-135.
12. Y.B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 14 (2017), 75-86.
13. Y.B. Jun, S.J. Kim and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7 (2018), 23. http://dx.doi.org/10.3390/axioms7020023.
14. Y.B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-structures applied to BCK/BCI-algebras, Information, 8 (2017), 128. http://dx.doi.org/10.3390/info8040128
15. Y.B. Jun, F. Smarandache, S.Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK/BCI-algebras, Axioms, 7 (2018), 3.
16. S.J. Kim, S.Z. Song and Y.B. Jun, Generalizations of neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic points, Neutrosophic Sets and Systems, 20 (2018), 26-35.
17. M. Mohseni Takallo and M. Aaly Kologani, MBJ-neutrosophic  lters of equality algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(2) (2020), 57-75.
18. M.A.  Ozturk and Y.B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, Journal of the International Mathematical Virtual Institute, 8 (2018), 1-17.
19. A.Paad and M. Bakhshi, MBJ-neutrosophic  lters of equality algebras, Journal of Algebraic Hyperstructures and Logical Algebras, (2) 1 (2020), 45-56.
20. G. R. Rezaei, R. A. Borzooei and Y. B. Jun, Neutrosophic quadruple BCI-commutative ideal, Algebraic Structures and Their Applications, (2) 7 (2020), 63-77.
21. G. R. Rezaei, Y. b. Jun and R. A. Borzooei, Neutrosophic quadruple a-ideals, Neutrosophic Sets and Systems, 31 (2020), 266-281.
22. F. Smarandache, A unifying  eld in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
23. F. Smarandache, Neutrosophic set ? a generalization of intuitionistic fuzzy set, Journal of Defence Resources Management, (1) 1 (2010), 107-116. http://dx.doi.org/10.1109/GRC.2006.1635754.
24. S.Z. Song, F. Smarandache and Y.B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information, (4) 8 (2017), 130. http://dx.doi.org/10.3390/info8040130.
25. S.Z. Song, M. Khan, F. Smarandache and Y.B. Jun, A novel extension of neutrosophic sets and its application in BCK/BCI-algebras, In New Trends in Neutrosophic Theory and Applications (Volume II); Pons Editions; EU: Brussels,
Belgium, 2018, 308-326.
26. I.B. Turksen, Interval valued fuzzy sets based on normal forms, Fuzzy Sets and Systems, (2) 20 (1986), 191-210. http://dx.doi.org/10.1016/0165-0114(86)90077-1.
27. H. Wang, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets, Multispace and Multistructure, 4 (2010), 410-413.
28. L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.