On left r-clean bimodules

Document Type : Research Paper

Authors

1 Department of Mathematics, Universitas Gadjah Mada , Yogyakarta, Indonesia Department of Mathematics Education, Universitas Ahmad Dahlan, Bantul, Indonesia

2 Department Mathematics Universitas Gadjah Mada, Yogyakarta, Indonesia

3 Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

‎Let $R$ be an associative ring with identity and $M$ an $R$-bimodule‎. ‎We introduce the generalization of $r$-clean rings called left $r$-clean $R$-bimodules‎, ‎defined without their endomorphism rings‎. ‎An $R$-bimodule $M$ is said to be left $r$-clean if each element is the sum of a left idempotent and a left regular element of $M$‎. ‎We present some properties of the left $r$-clean $R$-bimodule‎. ‎At the end of this paper‎, ‎we give the sufficient and necessary condition for an $R$-bimodule to form a left $r$-clean $R$-bimodule.‎

Keywords


1. E. Akalan and L. Vas, Classes of almost clean rings, Algebr. Represent. Theory,16 (2013), 843-857.
2. M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra, (12) 36 (2008), 4620-4642.
3. D. D. Anderson and V.P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, Comm. Algebra, (7) 30 (2002), 3327-3336.
4. F. W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag New York Inc., USA, 1992.
5. N. Ashra  and E. Nasibi, r-Clean rings, Math. Rep., (2) 15 (2013), 125-132.
6. N. Ashra  and E. Nasibi, Rings in which elements are the sum of an idempotent and a regular element, Bull. Iranian Math. Soc., (3) 39 (2013), 579-588.
7. G. Calugareanu, On abelian groups with commutative clean endomorphism rings,
Analete Stiinti ce Ale Universitath "Al.I.Cuza" din Iasi (S.N.) Matematica, LVIII (2012), 227-237.
8. V. P. Camillo, D. Khurana, T.Y. Lam, W.K. Nicholson, and Y. Zhou, Continuous modules are clean, J. Algebra, 304 (2006), 94-111.
9. V. P. Camillo and H. P. Yu, Exchange rings, unit and idempotents, Comm. Algebra, (12) 22 (1994), 4737-4749.
10. W. Chen and S. Cui, Notes on clean rings and clean elements, Southeast Asian Bull. Math. (5) 32 (2008), 0-6.
11. H. Chen and M. Chen, On clean ideals, Int. J. Math. Math. Sci. 62 (2003), 3949-3956.
12. H. Hakmi, P-regular and P-local rings, J. Algebra Relat. Topics, (1) 9 (2021), 1-19.
13. J. Han and W.K. Nicholson, Extensions of clean rings, Comm. Algebra, 29(6) (2001), 2589-2595.
14. A. Khaksari and Gh. Moghini, Some results on clean rings and modules, World Applied Sciences Journal, 6(10) (2009), 1384-1387.
15. W. Wm. McGovern, A characterization of commutative clean rings, International Journal of Mathematics, Game Theory, and Algebra, 4 (2006), 403-413.
16. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.
17. W. K. Nicholson, K. Vadarajan, and Y. Zhou, Clean endomorphism rings, Arch. Math., 83 (2004), 340-343.
18. W. K. Nicholson and Y. Zhou, Clean general rings, J. Algebra, 291 (2005), 297-311.
19. T. Ozdin, Almost quasi clean rings, Turkish J. Math. 45 (2021), 961-970.
20. S. Sahebi and V. Rahmani, On g(x)-f-clean ring, Palest. J. Math. (2) 5 (2016), 117-121.
21. K. Varadarajan, A Generalization of Hilber's basis theorem, Comm. Algebra, (20) 10 (1982), 2191-2204.
22. D. A. Yuwaningsih, I. E. Wijayanti, and B. Surodjo, On r-clean ideals, Palest. J. Math. (2) 12 (2023), 217-224.
23. H. Zhang, On Strongly clean modules, Comm. Algebra, 37 (2009), 1420-1427.