Some results of the minimum edge dominating energy of the Cayley graphs for the finite group Sn

Document Type : Research Paper

Authors

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran.

Abstract

‎Let Γ be a finite group and S be a non-empty subset of Γ‎. ‎A Cayley graph of the group Γ‎, ‎denoted by Cay(Γ,S) is defined as a simple graph that its vertices are the elements of Γ and two vertices u and v are adjacent if uv1Γ. ‎The minimum edge dominating energy of Cayley graph Cay(Γ,S) is equal to the sum of the absolute values of eigenvalues of the minimum edge dominating matrix of graph Cay(Γ,S)‎. ‎In this paper‎, ‎we estimate the minimum edge dominating energy of the Cayley graphs for the finite group Sn‎.

Keywords


1. S. Akbari, A. H. Ghodrati, I. Gutman, M. H. Hosseinzadeh, E. V. Konstantinova,
On path energy of graphs, MATCH Commun. Math. Comput. Chem. (2) 81
(2019), 465-470.
2. M. H. Akhbari, K. K. Choong, F. Movahedi, A note on the minimum edge
dominating energy of graphs, J Appl Math Comput, 63 (2020), 295-310.
3. L. E. Allem, G. Molina, A. Pastine, Short note on Randic energy, MATCH
Commun. Math. Comput. Chem. (2) 82 (2019), 515{528.
4. S. Arumugam, S. Velammal, Edge Domination in Graphs, Taiwanese Journal of
Mathematics, (2) 2 (1998), 173-179.
5. L. W. Beineke, R. J. Wilson, Topics in Algebraic Graph Theory. USA: Cambridge
University Press. 2004.
6. S. B. Bozkurt, D. Bozkurt, On Incidence Energy, MATCH Commun. Math.
Comput. Chem. 72 (2014), 215-225.
7. A. Cayley, Desiderata and suggestions: No. 2. the theory of groups: Graphical
representation, Amer. J. Math. 1 (1878), 174-176.
8. B. F. Chen, E. Ghorbani, K. B. Wong, Cyclic Decomposition of k-
Permutations and Eigenvalues of the Arrangement Graphs, (4) 20 (2013),
https://doi.org/10.37236/3711.
9. S. Chokani, F. Movahedi, S. M. Taheri, Some of the graph energies of zero-divisor
graphs of  nite commutative rings, Int. J. Nonlinear Anal. Appl. (7) 14 (2023),
207-216.
10. S. Chokani, F. Movahedi, S. M. Taheri, Results on some energies of the Zero-
divisor graph of the commutative ring Zn, The 14th Iranian International Group
Theory Conference, Tehran, Iran, (2022), 138-146.
11. S. Chokani, F. Movahedi, S. M. Taheri, The minimum edge dominating energy
of the Cayley graphs on some symmetric groups, Alg. Struc. Appl. (2) 10 (2023),
15-30.
12. C. Das, I. Gutman, Comparing laplacian energy and Kirchho  index, MATCH
Commun. Math. Comput. Chem. 81(2) (2019), 419-424.
13. K. C. Das, Conjectures on resolvent energy of graphs, MATCH Commun. Math.
Comput. Chem. (2) 81 (2019), 453-464.
14. K. Day, A. Tripathi, Arrangement graphs: a class of generalized star graphs,
Inf. Process. Lett. 42 (1992), 235-241.
15. A. F. A. Fadzil, N. H. Sarmin, A. Erfanian, The Energy of Cayley Graphs for
Symmetric Groups of Order 24, ASM Sci. J., 13 (2020), 1-6.
16. I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz.
103 (1978), 1-22.
17. R. P. Gupta, In: proof Techniques in graph theory (ED. F. Harary), Academic
press, New York, (1969), 61-62.
18. F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
19. E. N. Khomyakova, E. V. Konstantinova, Note on exact values of multiplicities
of eigenvalues of the star graph. Sib. Elektron. Mat. Izv., 12 (2015), 92-100.
20. F. Movahedi, The relation between the minimum edge dominating energy and
the other energies, Discrete Math. Algorithms Appl. (6) 12 (2020), 2050078 (14
pages).
21. F. Movahedi, Bounds on the minimum edge dominating energy of in-
duced subgraphs of a graph, Discrete Math. Algorithms Appl. (6) 13 (2021),
https://doi.org/10.1142/S1793830921500804.
22. F. Movahedi, M. H. Akhbari, New results on the minimum edge dominating
energy of a graph, J. Math. Ext. (5) 16 (2022), 1-17.
23. M. R. Rajesh Kanna, B. N. Dharmendra, G. Sridhara, The minimum dominat-
ing energy of a graph, Int J Pure Appl Math, 85 (2013), 707-718.