On cohomology for module bundles over associative algebra bundles

Document Type : Research Paper

Authors

1 Department of Mathematics, Field Marshal K.M. Cariappa College, (A Constituent College of Mangalore University), Madikeri, India

2 Department of Mathematics, Mangalore University, Mangala- gangothri and Department of Mathematics, University of Mysore, Man-asagangotri , India

Abstract

We define cohomology of module bundles over associative algebra bundles. We establish a one to one correspondence between the first cohomology classes and the extensions of module bundles. Using this correspondence we give sufficient condition in terms of cohomology for an algebra bundle to be semisimple.

Keywords


1. K. Ajaykumar, B. S. Kiranagi and R. Rangarajan, Pullback of Lie algebra and
Lie group bundles and their homotopy invariance, J. Algebra Appl. (1) 8 (2020),
15-26.
2. M. F. Atiyah, K-Theory, W.A.Benjamin, Inc., New York, Amsterdam, 1967.
3. C. Chidambara and B. S. Kiranagi, On cohomology of associative algebra bun-
dles, J. Ramanujan Math. Soc., (1) 9 (1994), 1-12.
4. W. Greub, S. Halperin and R. Vanston, Connections, curvature, and cohomol-
ogy, Vol. II, Academic Press, New York, London, 1973.
5. B. S. Kiranagi and R. Rajendra, Revisiting Hochschild cohomology for algebra
bundles, J. Algebra Appl. (6) 7 (2008), 685-715.
6. R. Kumar, On characteristic ideal bundles of a Lie algebra bundle, J. Algebra
Appl. (2) 9 (2021), 23-28.
7. R. Kumar, Jordan algebra bundles and Jordan rings, J. Algebra Relat. Topics,
(1) 10 (2022), 113-118.
8. G. Prema and B. S. Kiranagi, On complete reducibility of module bundles,
Bull.Asutal. Math.Soc., 28 (1983), 401-409.
9. R. D. Schafer, Introduction to nonassociative algebras, Academy Press, New
York and London, 1966.
10. D. S. Trustin, Cohomology for modules over associative algebras, J. Algebra,
51 (1978), 550-561.