New models of four dimensional absolute valued algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, Sidi Mohamed Ben Abdellah University, Faculty of Scinces Dhar El Mahraz, Fez-Atlas, Morocco

2 Regional Center For Education And Training Professions, Casablanca-Settat, Morocco

Abstract

This paper deals with some results concerning the 4-dimensional absolute valued algebras with left omnipresent unit‎. ‎We also construct‎, ‎by algebraic methods some new models of 4-dimensional absolute valued algebras with left omnipresent unit‎. ‎These new algebras contain at least one 2-dimensional sub-algebra‎, ‎and aren't isomorphic to $\mathbb{H}$ ( The quaternion algebra).

Keywords


[1] A. A. Albert, Absolute valued real algebras , Ann. Math., 48 (1947), 495-501.
[2] M. Benslimane, A. Moutassim and A. Rochdi, Sur les algébres absolument valuées contenant un elément central non nul, Advances in Applied Cliford Algebras, 20 (2010), 13-21.
[3] M. Benslimane and A. Moutassim, Some new class of absolute valued algebras with left unit, Advances in Applied Cliford Algebras, 21 (2011), 31-40.
[4] A. Calderón, A. Kaidi, C. Martín, A. Morales, M. I. Ramírez and A. Rochdi, Finitedimensional absolute valued algebras, Isr. J. Math., 184 (2011), 193-220.
[5] M. L. El-Mallah, On finite dimensional absolute valued algebras satisfying $(x‎, ‎x‎, ‎x) = 0$, Arch Math., 49 (1987), 16-22.
[6] M. L. El-Mallah, Absolute valued algebras satisfying $(x^2‎, ‎x‎, ‎x) = 0$, Arch. Math., 77 (2001), 378-382.
[7] S. S. Gashiti, Some results on nilpotent lie algebras, Journal of Algebra and Related Topics, (2) 11 (2023), 99-103.
[8] F. Hirzebruch, M. Koecher and R. Remmert, Numbers, Springer Verlag, 1991.
[9] A. Kaidi, M. I. Ramírez and A. Rodrǵuez, Absolute valued algebraic algebras are finite dimensional, J. Algebra, 195 (1997), 295-307.
[10] N. Motya, H. Mouanis, and A. Moutassim, On pre-Hilbert algebras containing a nonzero central idempotent f such that $\|x^{2}\|\leq\|x\|^{2}$‎, ‎and $\|fx\|=\|x\|$, Journal of Southwest Jiaotong University, (6) 57 (2022), 289-295.
[11] N. Motya, and A. Moutassim,On four dimensional absolute valued algebras with non zero omnipresent idempotent, Wseas Transactions on Mathematics, 22 (2023), 562-569.
[12] A. Moutassim, Quelques résultats sur les algèbres flexibles préhilbertiennes sans diviseurs de zéro vérifiant $\|x^2\| = \|x\|^2$, Advances in Applied Clifford Algebras, 18 (2008), 255-267.
[13] A. Moutassim and A. Rochdi, Sur les algèbres préhilbertiennes vérifiant $\|a\|^2 \leq \|a\|^2$, Advances in Applied Clifford Algebras, 18 (2008), 269-278.
[14] M. I. Ramŕez, On four-dimensional absolute valued algebras, Proceedings of the International Conference on Jordan Structures (Málaga, 1997), univ. Málaga, (1999), 169-173.
[15] A. Rodríguez, One-sided division absolute-valued algebras, Publ. Math, 36 (1992), 925-954.
[16] A. Rodríguez, Absolute valued algebras of degree two, In Nonassociative Algebra and its applications, 303 (1994), 350-356.
[17] A. Rodríguez, Absolute-valued algebras and absolute-valuable Banach spaces, Advanced courses of mathematical analysis I, World Sci. Publ., Hackensack, NJ, (2004), 99-155.
[18] B. Segre, La teoria delle algebre ed alcune questione di realta, Univ. Roma, Ist. Naz. Alta. Mat., Rend. Mat. E Appl., (5) 13 (1954), 157-188.
[19] M. F. Smiley, Real Hilbert algebras with identity, Proc. Amer. Math. Soc., 16 (1965), 440-441.
[20] K. Urbanik and F. B. Wright, Absolute valued algebras, Proc. Amer. Math. Soc., 11 (1960), 861-866.
[21] B. Zalar, On Hilbert spaces with unital multiplication, Proc. Amer. Math. Soc., 123 (1995), 1497-1501.