Let $R$ be a commutative ring with identity $1\neq 0$ and $M$ a non-zero unital $R$-module. In this paper, we present the concept of fully $I$-submodules of $M$ such that $I$ is an ideal of $R$ which is a generalization of $r$-submodules. Consider that $I$ is an ideal of $R$, a proper submodule $N$ of $M$ is a fully $I$-submodule if $JK\subseteq N$ with ${\rm ann}_{M}(J)=0_{M}$ results that $K\subseteq N$ for each submodule $K$ of $M$ and each ideal $J$ of $R$. In addition, we present the concept of fully special $I$-submodules which is a generalization of special $r$-submodules. A proper submodule $N$ of $M$ is a fully special $I$-submodule if the inclusion $IL\subseteq N$ with ${\rm ann}_{R}(L) = 0_{R}$, implies that $I\subseteq (N:M)$ for each submodule $L$ of $M$ and each ideal $J$ of $R$. We explore certain outcomes related to these categories of submodules.
Rajaee, S. (2025). A generalization of r-submodules . Journal of Algebra and Related Topics, 12(2), 165-178. doi: 10.22124/jart.2024.27906.1688
MLA
Rajaee, S. . "A generalization of r-submodules ", Journal of Algebra and Related Topics, 12, 2, 2025, 165-178. doi: 10.22124/jart.2024.27906.1688
HARVARD
Rajaee, S. (2025). 'A generalization of r-submodules ', Journal of Algebra and Related Topics, 12(2), pp. 165-178. doi: 10.22124/jart.2024.27906.1688
CHICAGO
S. Rajaee, "A generalization of r-submodules ," Journal of Algebra and Related Topics, 12 2 (2025): 165-178, doi: 10.22124/jart.2024.27906.1688
VANCOUVER
Rajaee, S. A generalization of r-submodules . Journal of Algebra and Related Topics, 2025; 12(2): 165-178. doi: 10.22124/jart.2024.27906.1688