‏A ‎generalization ‎of‎ ‎‎r‎-submodules ‎

Document Type : Research Paper

Author

Department of Mathematics, University of Payame Noor,Tehran, Iran

Abstract

Let ‎$‎R‎$‎ be a commutative ring with ‎identity $‎1\neq 0‎$‎ and‎ $‎M‎$ ‎be a non-zero ‎unital ‎‎$‎R‎$‎-module. ‎In this paper‎, we generalize the concept of ‎$‎r‎$‎-submodules of an ‎$‎R‎$‎-module ‎$‎M‎$‎ to the ‎$‎I‎$‎-submodules of ‎$‎M‎$ ‎for ideals ‎$‎I‎$ ‎of ‎$‎R‎$ ‎with ‎‎$‎{\rm ann}‎_{M}(I)=0‎$‎. ُ‎Consider that ‎$‎I‎$ ‎is an ideal of ‎$‎R‎$‎, ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎a ‎‎‎proper submodule ‎$‎N‎$‎ of ‎$‎M‎$‎ is an ‎$‎I‎$‎-submodule if for every submodule ‎$‎K‎$ ‎of ‎‎$‎‎M‎$,‎‎ ‎$‎IK‎\subseteq ‎N‎‎$ ‎‎with ‎‎${\rm ‎ann}‎_{M}‎(I) = 0‎_{M}‎$, implies that ‎$‎K‎\subseteq ‎‎N‎$. Also, we say that ‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎‎a ‎‎‎proper submodule ‎$‎N‎$‎ of ‎$‎M‎$‎ is a special ‎$‎I‎$‎-submodule if for every submodule ‎$L‎$ ‎of ‎‎$‎‎M‎$‎‎‎‎‎‎‎‎‎‎‎‎ the inclusion ‎$‎IL‎\subseteq ‎N‎‎$ ‎‎with ‎‎${\rm ‎ann}‎_{R}‎(L) = 0‎_{R}‎$, implies that ‎$‎I‎\subseteq (‎‎N:M)‎$. We explore certain outcomes related to these categories of submodules.

Keywords

Main Subjects