Let $\CA$ be an exact category and $\Cb_N(\CA)$ be the category of all $N$-complexes in $\CA$. If $\mathbb{X}$ is a sufficiently nice class of objects in $\Cb_N(\CA)$, then, we give a characterization of elements in the right orthogonal $\mathbb{X}^\perp$ of $\mathbb{X}$ in $\Cb_N(\CA)$ with respect to the induced exact structure.
Hosseini, E. and Izadyar, K. (2024). Orthogonality in the category of N-complexes. Journal of Algebra and Related Topics, (), -. doi: 10.22124/jart.2024.26990.1674
MLA
Hosseini, E. , and Izadyar, K. . "Orthogonality in the category of N-complexes", Journal of Algebra and Related Topics, , , 2024, -. doi: 10.22124/jart.2024.26990.1674
HARVARD
Hosseini, E., Izadyar, K. (2024). 'Orthogonality in the category of N-complexes', Journal of Algebra and Related Topics, (), pp. -. doi: 10.22124/jart.2024.26990.1674
CHICAGO
E. Hosseini and K. Izadyar, "Orthogonality in the category of N-complexes," Journal of Algebra and Related Topics, (2024): -, doi: 10.22124/jart.2024.26990.1674
VANCOUVER
Hosseini, E., Izadyar, K. Orthogonality in the category of N-complexes. Journal of Algebra and Related Topics, 2024; (): -. doi: 10.22124/jart.2024.26990.1674