Some results on ‎$‎‎‎2‎$‎-absorbing $ R_{\Gamma}‎-‎$semimodules over $ \Gamma‎-‎$semirings

Document Type : Research Paper

Author

Department of‎ ‎Mathematics‎,‎ Maharaja Agarsen University, (Baddi) Solan‎, ‎India

Abstract

‎The purpose of this paper is to introduce the notion of 2-absorbing $ R_{\Gamma}‎-‎$semimodules over $ \Gamma‎-‎$semirings‎, ‎as a generalization of 2-absorbing semimodules over semirings and study various results related to them‎.

Keywords

Main Subjects


[1] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[2] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J., 52 (2012), 91-97.
[3] M. K. Dubey and P. Sarohe, On 2-absorbing semimodules, Quasigroups and Related Systems, 21 (2013), 175-184.
[4] T. K. Dutta and S. K. Sardar, On prime ideals and prime radicals of Γ− semirings, An. Stiint. Univ. Al. I. Cuza Iasi Mat., 46 (2001), 319-329.
[5] T. K. Dutta and U. Dasgupta, Properties of Γ− S-semimodules via its associated semimodules, Southeast Asian Bulletin of Mathematics, 28 (2004), 243-250
[6] W. M. Fakieh and F. A. Alhawiti, Ideal theory in commutative Γ− semirings, International Journal of Algebra, (2) 15 (2021), 77-101.
[7] S. M. A. Galindo and G. C. Petalcorin, Some properties of Γ− semimodules over Γ− semirings, Journal of Algebra and Applied Mathematics, (2) 13 (2015), 97-113.
[8] S. M. A. Galindo and G. C. Petalcorin, Partitioning and substractive SΓ− semimodules, Journal of Algebra and Applied Mathematics, (1) 14 (2016), 59-78.
[9] H. K. Ranote, On some properties of 2-absorbing ideals in commutative Γ− semirings, Bulletin of the Institute of Mathematics., (communicated)
[10] M. M. K. Rao, Γ− semirings-I, South East Asian Bull. of Math., 19 (1995), 49-54. 
[11] N. Sangjaer and S. Pianskool, On 2-absorbing primary ideals in commutative Γ− semirings, Thai Journal of Mathematics, (2019), 49-60.
[12] S. K. Sardar and U. Dasgupta, On primitive Γ− semiring, Novi Sad J. Math., (1) 34 (2004), 1-12.
[13] T. R. Sharma and S. Gupta, Some conditions on Γ− semirings, Journal of Combinatorics Information and System Sciences, 41 (2016), 79-87.