[1] J. C. Abbot, Implicational algebras, Bulletin Mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, (1) 11 (1967), 3-23.
[2] I. Chajda, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, (1) 44 (2005), 19-23.
[3] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups Related Systems, 8 (2001), 1-6.
[4] W. A. Dudek and J. Thomys, On some generalization of BCC-algebras, Internat. J. Comp. Math., 89 (2012), 1596-1616.
[5] W. A. Dudek, X. H. Zhang and Y. Q. Wang, Ideals and atoms of BZ-algebras, Math. Slovaca, 59 (2009), 387-404.
[6] T. Katican, T. Oner and A. Borumand Saeid, On Sheffer stroke BE-algebras, Discussione Mathematicae General Algebra and Applications, (2) 42 (2022), 293-314.
[7] H. M. Khalid and B. Ahmad, Fuzzy H-ideals in BCI-algebras, Fuzzy Sets and Systems, 101 (1999), 153-158.
8] Y. Komori, The variety generated by BCC-algebras is finitely based, Reports Fac. Sci. Shizuoka Univ., 17 (1983), 13-16.
[9] Y. Komori, The class of BCC-algebras is not variety, Math. Japonica, 29 (1984), 391-394.
[10] A. Lyczkowska, Fuzzy QA-ideals in weak BCC-algebras, Demonstratio Math., 34 (2001), 513-524.
[11] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist and L. Wos, Short single axioms for Boolean algebra, Journal of Automated Reasoning, (1) 29 (2002), 1-16.
[12] T. Oner, T. Katican and A. Borumand Saeid, Relation between Sheffer Stroke and Hilbert Algebras, Categories and General Algebraic Structures with Applications, (1) 14 (2021), 245-268.
[13] T. Oner, T. Katican and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent and Fuzzy Systems, (1) 40 (2021), 759-772.
[14] T. Oner, T. Katican and A. Borumand Saeid, On Sheffer stroke UP-algebras, Discussione Mathematicae General Algebra and Applications, (2) 41 (2021), 381-394.
[15] T. Oner, T. Katican and A. Borumand Saeid, Neutrosophic N-structures on Sheffer stroke Hilbert algebras, Neutrosophic Sets and Systems, 42 (2021), 221-238.
[16] T. Oner, T. Katican and A. Rezaei, Neutrosophic N-structures on strong Sheffer stroke non-associative MV-algebras, Neutrosophic Sets and Systems, 40 (2021), 235-252.
[17] T. Oner, T. Katican, A. Borumand Saeid and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, Analele Stiintifice ale Universitatii Ovidius Consanta, (1) 29 (2021), 143-164.
[18] T. Oner, T. Katican and A. Borumand Saeid, (Fuzzy) filters of Sheffer stroke BL-algebras, Kragujevac Journal of Mathematics, (1) 47 (2023), 39-55.
[19] E. L. Post, Introduction to a general theory of elementary propositions, Am. Jl. of Math., 43 (1921), 167–168.
[20] A. Radfar, S. Soleymani, A. Rezaei, Some results on commutative BI-Algebras, Journal of Mahani Mathematical Research, (1) 13 (2023), 491-510.
[21] D. Romano, On filters in BZ-algebras, Filomat, (18) 32 (2018), 6319-6326.
[22] H. M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Transactions of the American Mathematical Society, (4) 14(1913), 481-488.
[23] D. L. Webb, Generation of any n-valued logic by one binary operator, Proc. Nat. Acad. Sci., 21 (1935), 252-254.
[24] R. F. Ye, On BZ-algebras, Selected Papers on BCI/BCK-algebras and Computer Logic Shangai Jiaotong Univ. Press, (1991), 21-24.
[25] X. H. Zhang and R. F. Ye, BZ-algebras and groups, J. Math. Phys. Sci., 29 (1995), 223-233.
[26] X. H. Zhang, Y. Q. Wang and W. A. Dudek, T-ideals in BZ-algebras and T-type BZ-algebras, Indian J. Pure Appl. Math., 34 (2003), 1559-1570.