A note on dimension of local cohomology modules

Document Type : Research Paper

Authors

1 University of Mohaghegh Ardabili

2 Deprtment of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili

3 Payame noor University

4 Islamic Azad University

Abstract

‎Let $(R‎, m)$ be a commutative Noetherian local ring and $I$ be an ideal of $R$‎. ‎In this paper‎ ‎first we find new results about the dimension of the local cohomology module $H^i_I(R)‎$‎‎. ‎Then we will obtain new relations between the invariants such as‎ ‎arithmetic rank‎, ‎cohomological dimension‎, ‎krull dimension, and the height of an ideal of $R$‎.

Keywords


[1] M. P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
[2] M. Dibaei and S. Yassemi, Attached primes of the topolocal cohomology modules with respect to an ideal, Archiv der Mathematik, 84 (2005), 292-297.
[3] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc., 130 (2002), 3537–3544.
[4] G. Faltings, Uber lokale Kohomologiegruppen hoher Ordnung, J. Reine Angew. Math., 313(1980), 43–51.
[5] A. Grothendieck, Local Cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862 Springer, New York, 1966.
[6] R. Hartshorne, Affine duality and cofiniteness, Invent. Math., 9 (1970), 145–164.
[7] M. Hellus and J. Stuckrad, Matlis duals of top local cohomology modules, Proc. Amer. Math. Soc., 136 (2008), 489–498.
[8] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
[9] A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl., 8(2009), 855-862.
[10] P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand., 92 (2003), 161-180.