[1] W. Ahmed and M. R. Mozumder, Study of multiplicative b-generalized derivation and its additivity, J. Algebra Relat. Topics, (1) 11 (2023), 111-123.
[2] A. Ali, M. Yasen and M. Anwar, Strong commutativity preserving mappings on semi-prime rings, Bull. Korean Math. Soc., (4) 43 (2006), 711-713.
[3] M. Ashraf, A. Ali and S. Ali, Some commutativity theorem for prime rings with generalized derivations, Southeast Asian Bull. Math., 31 (2007), 415-421.
[4] K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Pure Appl. Math. Dekker, New York, (1996).
[5] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., (4) 37 (1994), 443-447.
[6] M. Brešar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra App., 161 (1993), 342-357.
[7] V. De Filippis and F. Wei, b-generalized skew derivations on Lie ideals, Mediterr. J. Math., (2) 15 (2018), pp-24.
[8] Ö. Gölbaşi, Multiplicative generalized derivations on ideals in semi-prime rings, Math. Slovaca, (6) 66 (2016), 1285-1296.
[9] V. K. Kharchenko, Differential identity of prime rings, Algebra Logic, 17 (1978), 155-168.
[10] E. Koç, Ö. Gölbaşi, Some results on ideals of semi-prime rings with multiplicative generalized derivations, Comm. Algebra, (11) 46 (2018), 4905-4913.
[11] T. K. Lee and T. L. Wong, Nonadditive strong commutativity preserving maps, Commun. Algebra, 40 (2012), 2213–2218.
[12] P. K. Liau and C. K. Liu, An Engel condition with b-generalized derivations for Lie ideals, J. Algebra App., (3) 17 (2018), 1850046, pp-17.
[13] C. K. Liu, An Engel condition with b−generalized derivations, Linear Multilinear Algebra, (2) 65 (2017), 300-312.
[14] J. Ma and X. W. Xu, Strong commutativity-preserving generalized derivations on semiprime rings, Acta Math. Sinica, (11) 24 (2008), 1835-1842.
[15] J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull., 27 (1984), 122-126.
[16] N. Rehman and M. S.Khan, A note on multiplicative (generalized)-skew derivation on semiprime rings, J. Taibah Univ. Sci., (4) 12 (2018), 450-454.