Classification of 3-GNDB graphs

Document Type : Research Paper

Authors

1 Department of Mathematics, Islamic Azad University, Nazarabad Branch, Nazarabad, Iran

2 Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

3 Department of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran

Abstract

A nonempty graph $\Gamma$ is called generalized 3-distance-balanced, (3-$GDB$) whenever for every edge $ab$, $|W_{ab}|=3|W_{ba}|$ or conversely. As well as a graph $\Gamma$ is called generalized 3-nicely distance-balanced (3-$GNDB$) whenever for every edge $ab$ of $\Gamma$, there exists a positive integer $\gamma_\Gamma$, such that: $|W_{ba}|=\gamma_\Gamma$.In this paper, we classify 3-$GNDB$ graphs with, $\gamma_\Gamma\in \{1,2\}$.

Keywords

Main Subjects


[1] Z. Aliannejadi, M. Alaeiyan and A. Gilani, Strongly edge distance-balanced graph products, 7th International Conference on Combinatorics, Cryptography, Computer Science and Computing, (2022).
[2] Z. Aliannejadi, A. Gilani, M. Alaeiyan and J. Asadpour, On some properties of edge quasidistance-balanced graphs, Journal of Mathematical Extension, 16 (2022), 1–13.
[3] K. Balakrishman, M. Changat, I. Peterin, S. P. Špacapan, P. Šparal and A. R. Subhamathi, Strongly distance-balanced graph and graph product, European J. Combin., 30 (2009), 1048–1053.
[4] S. Cabello and P. Lukšič, The complexity of obtaining a distance-balanced graph, Electron. J. combin., (18) 1 (2011), Paper 49.
[5] K. Handa, Bipartite graphs with balanced (a, b)-partitions, Ars Combin., 51 (1999), 113–119.
[6] A. Ilič, S. Klavžar and M. Milanović, On distance-balanced graphs, European J. Combin., 31 (2010), 733–737.
[7] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, Distance-balanced graphs:symmetry conditions, Discrete Math., 306 (2006), 1881–1894.
[8] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, The strongley distance-balanced property of generalized petersen graphs, Ars Math. Contemp., 2 (2009), 41–47.
[9] K. Kutnar and Š. Miklavič, Nicely distance-balanced graphs, European j. Combin., 39 (2014), 57–67.
[10] Š. Miklavič and P. Šparl, On the connectivity of bipartite distance-balanced graphs, European J. Combin., 33 (2012), 237–247.
[11] R. Yang, X. Hou, N. Li and W. Zhong, A note on the distance-balanced property of generalized petersen graphs, Electron. J. Combin., (16) 1 (2009), Note 33.