$\mathcal{LA}$-semiperfect modules

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Art and Science, Amasya university, İpekköy Amasya, Turkey

Abstract

Inspired in [7], ‎we strengthened semiperfect modules to $\mathcal{LA}$-semiperfect modules by adding the concept of locally artinian submodule and we proved that the concept of these modules is not empty‎. ‎Then we characterized these projective modules with the help of defining $\mathcal{LA}$-projective covers‎. ‎Thus we achived the necessary and sufficient condition for the projective module between the notion of $\mathcal{LA}$-semiperfect modules and the notion of locally artinian supplemented modules.

Keywords


[1] H. Bass, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., 95 (1960), 466–488.
[2] J. S. Golan, Quasiperfect modules, Quart. J. Math. Oxford, (2) 22 (1971), 173–182.
[3] F. Kasch, and E. A. Mares, Eine kennzeichnung semi-perfecter moduln, Nagoya Math. J., 27 (1966), 525–529.
[4] F. Kasch, Modules and Rings, New York-Academic Press, 1982.
[5] E. Kaynar, H. Çalışıcı and E. Türkmen, SS-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., (1) 69 (2020), 473–485.
[6] E. A. Mares, Semiperfect modules, Math.Zeitschr., 82 (1963), 347–360.
[7] W. K. Nicholson, On semiperfect modules, Canad. Math. Bull., (1) 18 (1975), 77–80.
[8] B. Nişancı Türkmen and Y. Şahin, Locally artinian supplemented modules, Algebraic Structures and Their Applications, (3) 11 (2024), 209–216.
[9] A. Olgun and E. Türkmen, On a class of perfect rings, Honam Mathematical J., (3) 42 (2020), 591–600.
[10] F. L. Sandomierski, On semiperfect and perfect rings, Proc. Amer. Math. Soc., 21 (1969), 205–207.
[11] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Springer-Verlag, 1991.
[12] D. X. Zhou and X. R. Zhang, Small-essential submodules and morita duality, Southeast Asian Bulletin of Mathematics, 35 (2011), 1051–1062.