Weak u-s-projective modules and dimensions

Document Type : Research Paper

Authors

1 Department of Artificial Intelligence, Faculty of Computer Science & Information Technology, Al-Razi University, Sana'a, Yemen

2 School of Mathematics and Statistics, Shandong University of Technology, Zibo 255000, China

Abstract

The primary focus of this paper is to introduce and investigate a fresh category of projective modules, referred to as weak $u$-$S$-projective modules ($w$-$u$-w-u- is an abbreviation for weak uniformly). These novel modules are utilized for characterizing $u$-$S$-von Neumann regular rings. Additionally, the paper investigates a new type of rings, named $u$-$S$-semihereditary rings. This leads to the introduction of the weak $u$-$S$-projective dimensions of modules and weak $u$-$S$-global dimension of rings in this paper.

Keywords


[1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
[2] R. A. K. Assaad and X. Zhang, Weak u-S-flat modules and dimensions, Kyu. Math. J., 36 (2023), 333-344.
[3] R. A. K. Assaad and X. Zhang, S-FI-flat and S-FI-injective modules, submitted.
[4] D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc., 55 (2018), 1499-1512.
[5] W. Qi, H. Kim, F. G. Wang, M. Z. Chen and W. Zhao, Uniformly S-Noetherian rings, Quaestiones Mathematicae, (2022).
[6] F. Wang and H. Kim, Foundations of commutative rings and their modules, Springer Nature Singapore Pte Ltd., Singapore, 2016.
[7] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc., 52 (2015), 1327-1338.
[8] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, Bull. Korean Math. Soc., (3) 59 (2022), 643-657.
[9] X. L. Zhang, On uniformly S-absolutely pure modules, J. Korean Math. Soc., (3) 60 (2023), 521-536.
[10] X. L. Zhang, The u-S-weak global dimension of commutative rings, Commun. Korean Math. Soc., (1) 38 (2023), 97-112.
[11] X. L. Zhang and W. Qi, Characterizing S-projective modules and S-semisimple rings by uniformity, J. Commut. Algebra, (2021).
[12] X. L. Zhang and W. Qi, The u-S-global dimensions of commutative rings, Bull. Korean Math. Soc., (6) 60 (2023), 1523-1537.
[13] X. L. Zhang, On uniformly S-coherent rings, Rocky Mountain J. Math., to appear.