Derivations mapping into the Jacobson radical of a Banach algebra

Document Type : Research Paper

Authors

1 Departement of Mathematics, National School of Applied Sciences, Ibnou Zohr University Agadir, Morocco

2 Departement of Mathematics, National School of Applied Sciences, Ibnou Zohr University, Agadir, Morocco

Abstract

‎Let $\mathcal{A}$ be a Banach algebra with Jacobson radical $Rad_{\mathcal{A}}$ and $d$ a continuous derivation of $\mathcal{A}$‎. ‎The purpose of this article is to investigate some sufficient conditions under which $d(\mathcal{A})\subseteq Rad_{\mathcal{A}}$ from a topological point of view‎. ‎Interesting results are established with some applications‎.

Keywords


  1. M. Bresar, Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994), 56-59.
  2.  M. Bresar and J. Vukman, Derivations on noncommutative Banach algebras, Arch. Math. (Basel) 59 (1992), 363-370.
  3. S. S. Gashti, Some results on nilpotent lie algebras, J. Algebra Relat. Topics, (2) 11 (2023), 99-103.
  4.  M. El Hamdaoui and A. Boua, Study of the structure of quotient rings satisfying algebraic identities, Journal of Algebra and Related Topics, (2) 11 (2023), 117-125.
  5. R. Harte, Invertibility and Singularity for Bounded Linear Operators. New York-Basel, Marcel Dekker 1988. XII, 590, 0-8247-7754-9.
  6.  C. Jian, Quasinilpotents in rings and their applications, Turkish J. Math., 42 (2018), 2847- 2855.
  7.  M. Mathieu and V. Runde, Derivations mapping into the radical II, Bull. London Math. Soc. (5) 24 (1992), 485-487.
  8.  I. M. Singer and J.Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
  9.  M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (3) 128 (1988), 435-460.