A new approach to isomorphism theorems in Hilbert algebras

Document Type : Research Paper

Authors

1 Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

2 Department of Mathematics, Rajah Serfoji Government College (affiliated to Bharathidasan University), Thanjavur-613005, Tamilnadu, India

3 Department of mathematics, Rajah Serfoji Government College, Thanjavur, Tamilnadu, India

Abstract

In this paper, we embark on an in-depth exploration of the profound connections between congruences, ideals, and homomorphisms in Hilbert algebras. Our research unveils a groundbreaking theorem that seamlessly integrates the principles of the first, second, and third isomorphism theorems within this algebraic structure. The study of these isomorphism theorems is crucial, as they provide fundamental insights into the structure and behaviour of algebraic systems, facilitating a deeper understanding and broader applications. This pivotal discovery not only enhances our comprehension of Hilbert algebras but also sets the stage for the development of new and innovative isomorphism theorems, promising to significantly enrich the field.

Keywords

Main Subjects


  1. A. H. Abed, Isomorphism of BZ-algebras, Int. J. Eng. Inf. Syst., (8) 4 (2020),116-120.
  2.  M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
  3.  R. D. Bejarasco and N. C. Gonzaga, Jr., On homomorphisms of AB-algebras, Missouri J. Math. Sci., (2) 31 (2019), 121-129.
  4.  J. E. Bolima and K. B. Fuentes, First and third isomorphism theorems for the dual B-algebra, Eur. J. Pure Appl. Math., (1) 16 (2023), 577-586.
  5.  D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe J. Math., 2 (1985), 29-35.
  6.  D. Busneag, Hilbert algebras of fractions and maximal Hilbert algebras of quotients, Kobe J. Math., 5 (1988), 161-172.
  7.  I. Chajda and R. Halas, Congruences and ideals in Hilbert algebras, Kyungpook Math. J., (2) 39 (1999), 429-429.
  8.  A. Diego, Sur les algebres de Hilbert, Collection de Logique Math. Ser. A (Ed. Hermann, Paris), 21 (1966), 1-52.
  9.  Y. Ding, F. Ge and C.Wu, BCI-homomorphisms, Formaliz. Math., (4) 16 (2008), 371-376.
  10.  W. A. Dudek, On fuzzi cation in Hilbert algebras, Contrib. Gen. Algebra, 11(1999), 77-83.
  11.  D. S. Dummit and R. M. Foote, Abstract algebra, John Wiley & Sons, 2004.
  12.  A. Iampan, The UP-isomorphism theorems for UP-algebras, Discuss. Math., Gen. Algebra Appl., (1) 39 (2019), 113-123.
  13.  A. Iampan, M. Vanishree and N. Rajesh, The isomorphism theorems for Hilbert algebras, ICIC Express Lett., Part B Appl., (12) 14 (2023), 1243-1249.
  14.  Y. B. Jun, Deductive systems of Hilbert algebras, Math. Japon., 43 (1996), 51-54.
  15.  Y. B. Jun, J. W. Nam and S. M. Hong, A note on Hilbert algebras, Pusan Kyongnam Math. J., (2) 10 (1994), 279-285.
  16.  P. Mosrijai, A. Satirad and A. Iampan, The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UP-homomorphism, Fundam. J. Math. Appl., (1) 1 (2018), 12-17.
  17.  L. Sassanapitax, The  rst isomorphism theorem on QI-algebras, Asian J. Appl. Sci., (3) 8 (2020), 156-164.
  18.  B. Sriponpaew and L. Sassanapitax, Isomorphism theorems on weak AB-algebras, Missouri J. Math. Sci., (1) 34 (2022), 85-93.
  19.  J. Zhan and Z. Tan, Intuitionistic fuzzy deductive systems in Hilbert algebra, Southeast Asian Bull. Math., (4) 29 (2005), 813-826.