1] S. L. Campbell, The Drazin inverse and systems of second order linear differntial equations, Linear and Multilinear Algebra, 14 (1983), 195–198.
[2] N. Castro-Gonza’lez, E. Dopazo and M. F. Mati’nez- Serrano, On the Drazin inverse of the sum of two operators and its applications to operator matrices, J. Math. Annal. Appl, (1) 350 (2009), 207–215.
[3] D. Cevetkovi’c-Ilic and Y. M. Wei, Representations for the Drazin inverse of bounded operators on Banach spaces, Electronic. J. Linear Algebra, 18 (2009), 613–627.
[4] X. Chen and R. E. Hartwig, The group inverse of the triangular matrix, Linear Algebra Appl., 237-238 (1996), 97–108.
[5] H. Chen and M. Sheibani, The g-Drazin inverses of anti-triangular block operator matrices, Appl. Math. Comput., 463 (2024).
[6] H. Chen and M. Sheibani, The g-Drazin inverse of the sum in a Banach algebra, Linear Multilinear Algebra, 70 (2022), 53–65.
[7] H. Chen and M. Sheibani, The g-Drazin inverses of special operator matrices, Oper. Matrices, 15 (2021), 151–162.
[8] C. Deng, D. Cevetkovi’c-Ilic and Y. Wei, Some results on the g-Drazin inverse of operator matrices, Linear Multilinear Algebra, (4) 58 (2010), 503–521.
[9] D. S. Djordjevic and Y. Wei, Additive results for the generalized Drazin inverse, J. Austral. Math. Soc., 73 (2002), 115–125.
[10] N. C. Gonzalez, and J. J. Koliha, New additive results for the g-Drazin inverse, Proc. Royal Soc. Edinburgh, 134 (2004), 1085–1097.
[11] L. Guo, H. Zou and J. Chen, The generalized Drazin inverse of operator matrices, Hacet. J. Math. Stat., (3) 49 (2020), 1134–1149.
[12] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J., 38 (1996), 367–381.
[13] Y. Liao, J. Chen and J. Cui, Cline’s formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc., 37 (2014), 37–42.
[14] D. Mosic, Extensions of Jacobson’s lemma for Drazin inverses, Aequat. Math., 91 (2017), 419–428.
[15] Y. Wei and H. Diao, On group inverse of singular Toeplitz matrices, Linear Algebra Appl., 339 (2005), 109–123.