[1] H. Abdelwahab, E. Barreiro, A. J. Calder´on, and A. F. Ouaridi, The classification of nilpotent Lie-Yamaguti algebras, Linear Algebra and its Applications, 654 (2022), 339–378.
[2] P. Benito, M. Bremner and S. Madariaga, Symmetric matrices, orthogonal Lie algebras and Lie-Yamaguti algebras, Linear and Multilinear Algebra, 63 (2015), 1257–1281.
[3] I. Burdujan, An example of a Lie algebra bundle, Stud. Cerc. Bac˘au, Seria Matem., 10 (2000), 79–88.
[4] L. Cantor and D. E. Persists, Differential Geometrical Methods in Mathematical Physics, Lectures Notes in Mathematics, Springer, New York, 1975.
[5] ´E. Cartan and J. A. Schouten, On the geometry of the group manifold of simple and semisimple groups, Proc. Acad. Amsterdam, 29 (1926), 803–815.
[6] A. Douady and M. Lazard, Espace fibr´es algebr`es de Lie et en groupes, Invent. Math., 1 (1966), 133–151.
[7] R. J. Duffin, On the characteristic matrices of covariant systems, Physical Review, 54 (1938), 1114.
[8] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math. Soc., 71 (1949), 149–170.
[9] P. Jordan, J.V. Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formation, Annals of Mathematics, 35 (1934), 29–64.
[10] N. Kemmer, Particle aspect of meson theory, Proceedings of the Royal Society, 173 (1939), 91–116.
[11] N. Kemmer, The algebra of meson matrices, Proceedings of the Cambridge Philosophical Society, 39 (1943), 189–196.
[12] M. Kikkawa, On local loops in affine manifolds, J. Sci. Hiroshima Univ. A-I, 28 (1964), 199–207.
[13] M. Kikkawa, Geometry of homogeneous Lie loops, Hiroshima Math. J., 5 (1975), 141–179.
[14] M. Kikkawa, Geometry of homogeneous left Lie loops and tangent Lie triple algebras, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science, 32 (1999), 57–68.
[15] M. K. Kinyon and A. Weinstein, Leibniz algebras, courant algebroids, and multiplications on reductive homogeneous spaces, American J. Math., 123 (2001), 525–550.
[16] B. S. Kiranagi, Lie algebra bundles, Bull. Sci. Math., (2) 102 (1978), 57–62.
[17] B. S. Kiranagi, B. Madhu and K. Ajaykumar, On Smooth Lie algebra bundles, International Journal of Algebra, (5) 11 (2017), 247–254.
[18] B. S. Kiranagi, G. Prema and C. Chidarnbara, Rigidity theorem for Lie algebra bundles, Communications in Algebra, (6) 20 (1992), 1549–1556.
[19] R. Kumar, On characteristic ideal bundles of a Lie algebra bundle, Journal of Algebra and Related Topics, (2) 9 (2021), 23–28.
[20] R. Kumar, Jordan algebra nundles and Jordan rings, Journal of Algebra and Related Topics, (1) 10 (2022), 113–118.
[21] R. Kumar, On derivation of algebra bundle, Journal of Algebra and Related Topics, (1) 11 (2023), 43–48.
[22] J. L. Loday, Une version non commutative des alg`ebres de Lie: les alg`ebres de Leibniz, Enseign. Math., 39 (1993), 269–293.
[23] K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, Cambridge, 2005.
[24] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math, 76 (1954), 33–65.
[25] H. M. Prasad, R. Rajendra and B. S. Kiranagi, On exact sequences of module bundles over algebra bundles, Palestine Journal of Mathematics, (1) 12 (2023), 42–49.
[26] N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
[27] K. Yamaguti, On the Lie triple system and its generalization, J. Sci. Hiroshima Univ., 21
(1958), 155–160.
[28] K. Yamaguti, On cohomology groups of general Lie triples systems, Kumamoto J. Sci., 84 (1969), 135–146.