Stability of the depth function of good filtrations

Document Type : Research Paper

Authors

1 Laboratoire de Mathématiques et Informatique, Université Nangui Abrogoua‎, ‎UFR‎ - ‎SFA‎, ‎‎Côte d'Ivoire

2 Departement de Sciences et Technologie, Ecole Normale Supérieure d'Abidjan‎, ‎‎‎Côte d'Ivoire

Abstract

Let $A$ be a Noetherian local ring‎, ‎and let $I \subset J$ be two ideals of $A$‎. ‎Let $M$ be a finitely generated $A$-module‎. ‎Brodmann proved that the function $n \mapsto \mathrm{depth}_{J}(\frac{M}{I^{n}M})$ is constant for large $n$‎.
‎In this paper‎, ‎we consider a filtration $\phi = (M_n)_{n \in \mathbb{N}}$ of $M$ and a filtration $f = (I_n)_{n \in \mathbb{N}}$ of $A$‎. ‎Generalizing Brodmann's result‎, ‎we first show that the function $n \mapsto \mathrm{depth}_{J}(\frac{M}{M_{n}})$ is constant for large $n$ of value $\mathrm{depth}_{J}(f‎, ‎M)$‎, ‎provided that $\phi$ is $f$-good and $f$ is strongly Noetherian‎. ‎Secondly‎, ‎we establish the inequality‎ ‎$\gamma_{J}(f‎, ‎M) \leq \dim_A(M)‎ - ‎\mathrm{depth}_{J}(f‎, ‎M)$‎, ‎where $\gamma_{J}(f‎, ‎M)$ denotes the analytic spread of $f$ at $J$ with respect to $M$‎. 

Keywords

Main Subjects


[1] S. Bandari, J. Herzog and T. Hibi, Monomial ideals whose depth function has any number of strict local maxima, Arkiv för Matematik, (1) 52 (2014) 11–19.
[2] W. Bishop, J. W. Petro, L. J. Ratliff and D. E. Rush, Note on Noetherian filtrations, Communications in Algebra, (2) 17 (1989) 471–485.
[3] M. Brodmann, The asymptotic nature of the analytic spread, Mathematical Proceedings of the Cambridge Philosophical Society, (1) 86 (1979) 35–39.
[4] M. Brodmann, Asymptotic stability of Ass( MInM ), Proceedings of the American Mathematical Society, (1) 74 (1979) 16–18.
[5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press (1993).
[6] L. Burch, Codimension and analytic spread, Mathematical Proceedings of the Cambridge Philosophical Society, (3) 72 (1972) 369–373.
[7] Y. Diagana, H. Dichi and D. Sangaré, Filtrations, generalized analytic independence, analytic spread, Afrika Mathematika, 4 (1994) 101–114.
[8] D. Kamano, K. A. Essan, A. Abdoulaye and E. D. Akeke, σ-Sporadic prime ideals and superficial elements, Journal of Algebra and Related Topics, (2) 5 (2017) 35-45.
[9] H. Matsumura, Commutative ring theory, Cambridge University Press (1989).
[10] L. D. Nam and M. Varbaro, When does depth stabilize early on?, Journal of Algebra, 445 (2016) 181–192.