Let $R$ be a commutative ring and let $M$ be an $R$-module. We define the small intersection graph $G(M)$ of $M$ with all non-small proper submodules of $M$ as vertices and two distinct vertices $N, K$ are adjacent if and only if $N\cap K$ is a non-small submodule of $M$. In this article, we investigate the interplay between the graph-theoretic properties of $G(M)$ and algebraic properties of $M$, where $M$ is a multiplication module.
Ansari-Toroghy, H., Farshadifar, F., & Mahboobi-Abkenar, F. (2016). The small intersection graph relative to multiplication modules. Journal of Algebra and Related Topics, 4(1), 21-32. doi: 10.22124/jart.2016.1778
MLA
H. Ansari-Toroghy; F. Farshadifar; F. Mahboobi-Abkenar. "The small intersection graph relative to multiplication modules". Journal of Algebra and Related Topics, 4, 1, 2016, 21-32. doi: 10.22124/jart.2016.1778
HARVARD
Ansari-Toroghy, H., Farshadifar, F., Mahboobi-Abkenar, F. (2016). 'The small intersection graph relative to multiplication modules', Journal of Algebra and Related Topics, 4(1), pp. 21-32. doi: 10.22124/jart.2016.1778
VANCOUVER
Ansari-Toroghy, H., Farshadifar, F., Mahboobi-Abkenar, F. The small intersection graph relative to multiplication modules. Journal of Algebra and Related Topics, 2016; 4(1): 21-32. doi: 10.22124/jart.2016.1778