Let be a commutative ring and let be an -module. We define the small intersection graph of with all non-small proper submodules of as vertices and two distinct vertices are adjacent if and only if is a non-small submodule of . In this article, we investigate the interplay between the graph-theoretic properties of and algebraic properties of , where is a multiplication module.
Ansari-Toroghy, H. , Farshadifar, F. and Mahboobi-Abkenar, F. (2016). The small intersection graph relative to multiplication modules. Journal of Algebra and Related Topics, 4(1), 21-32. doi: 10.22124/jart.2016.1778
MLA
Ansari-Toroghy, H. , , Farshadifar, F. , and Mahboobi-Abkenar, F. . "The small intersection graph relative to multiplication modules", Journal of Algebra and Related Topics, 4, 1, 2016, 21-32. doi: 10.22124/jart.2016.1778
HARVARD
Ansari-Toroghy, H., Farshadifar, F., Mahboobi-Abkenar, F. (2016). 'The small intersection graph relative to multiplication modules', Journal of Algebra and Related Topics, 4(1), pp. 21-32. doi: 10.22124/jart.2016.1778
CHICAGO
H. Ansari-Toroghy , F. Farshadifar and F. Mahboobi-Abkenar, "The small intersection graph relative to multiplication modules," Journal of Algebra and Related Topics, 4 1 (2016): 21-32, doi: 10.22124/jart.2016.1778
VANCOUVER
Ansari-Toroghy, H., Farshadifar, F., Mahboobi-Abkenar, F. The small intersection graph relative to multiplication modules. Journal of Algebra and Related Topics, 2016; 4(1): 21-32. doi: 10.22124/jart.2016.1778