Let $R$ be a prime ring, $I$ be any nonzero ideal of $R$ and $f:I\rightarrow R$ be an additive map. Then skew-Engel condition $\langle... \langle \langle$ $f(x),x^{n_1} \rangle,x^{n_2} \rangle ,...,x^{n_k} \rangle=0$ implies that $f (x)=0$ $\forall\,x\in I$ provided $2\neq$ char $(R)>n_1+n_2+...+n_k, $ where $n_1,n_2,...,n_k$ are natural numbers. This extends some existing results. In the end, we also generalise this result in the setting of MA-semirings.
Nadeem, M., Aslam, M., & Ahmed, Y. (2017). On the additive maps satisfying Skew-Engel conditions. Journal of Algebra and Related Topics, 5(2), 47-58. doi: 10.22124/jart.2017.2715
MLA
M. Nadeem; M. Aslam; Y. Ahmed. "On the additive maps satisfying Skew-Engel conditions". Journal of Algebra and Related Topics, 5, 2, 2017, 47-58. doi: 10.22124/jart.2017.2715
HARVARD
Nadeem, M., Aslam, M., Ahmed, Y. (2017). 'On the additive maps satisfying Skew-Engel conditions', Journal of Algebra and Related Topics, 5(2), pp. 47-58. doi: 10.22124/jart.2017.2715
VANCOUVER
Nadeem, M., Aslam, M., Ahmed, Y. On the additive maps satisfying Skew-Engel conditions. Journal of Algebra and Related Topics, 2017; 5(2): 47-58. doi: 10.22124/jart.2017.2715