Let $\Gamma=(G,\sigma)$ be a signed graph, where $G$ is the underlying simple graph with at least one edge and $\sigma : E(G) \longrightarrow \lbrace -,+\rbrace$ is the sign function on the edges of $G$. In this paper, we study the $ k $-th spectral moment of $(K_n,\sigma)$, for a signature $\sigma$. Also, we obtain the number of negative cycles in a signed complete graph whose negative edges induce the disjoint union of two distinct complete bipartite graphs.
Dalvandi, S., Heydari, F., & Maghasedi, M. (2019). The $ k $-${\rm \bf{ th}}$ spectral moment of signed complete graphs. Journal of Algebra and Related Topics, 7(1), 35-44. doi: 10.22124/jart.2019.13670.1150
MLA
S. Dalvandi; F. Heydari; M. Maghasedi. "The $ k $-${\rm \bf{ th}}$ spectral moment of signed complete graphs". Journal of Algebra and Related Topics, 7, 1, 2019, 35-44. doi: 10.22124/jart.2019.13670.1150
HARVARD
Dalvandi, S., Heydari, F., Maghasedi, M. (2019). 'The $ k $-${\rm \bf{ th}}$ spectral moment of signed complete graphs', Journal of Algebra and Related Topics, 7(1), pp. 35-44. doi: 10.22124/jart.2019.13670.1150
VANCOUVER
Dalvandi, S., Heydari, F., Maghasedi, M. The $ k $-${\rm \bf{ th}}$ spectral moment of signed complete graphs. Journal of Algebra and Related Topics, 2019; 7(1): 35-44. doi: 10.22124/jart.2019.13670.1150