In this paper, we prove that a nonzero square closed $*$-Lie ideal $U$ of a $*$-prime ring $\Re$ of Char $\Re$ $\neq$ $(2^{n}-2)$ is central, if one of the following holds: $(i)\delta(x)\delta(y)\mp x\circ y\in Z(\Re),$ $(ii)[x,y]-\delta(xy)\delta(yx)\in Z(\Re),$ $(iii)\delta(x)\circ \delta(y)\mp [x,y]\in Z(\Re),$ $(iv)\delta(x)\circ \delta(y)\mp xy\in Z(\Re),$ $(v) \delta(x)\delta(y)\mp yx\in Z(\Re),$ where $\delta$ is the trace of $n$-additive map $\digamma: \underbrace{\Re\times \Re\times....\times \Re}_{n-times}\longrightarrow \Re$,$~\mbox{for all}~ x,y\in U$.
Ali, A., & Kumar, K. (2020). Traces of permuting n-additive mappings in *-prime rings. Journal of Algebra and Related Topics, 8(2), 9-21. doi: 10.22124/jart.2020.16288.1200
MLA
A. Ali; K. Kumar. "Traces of permuting n-additive mappings in *-prime rings". Journal of Algebra and Related Topics, 8, 2, 2020, 9-21. doi: 10.22124/jart.2020.16288.1200
HARVARD
Ali, A., Kumar, K. (2020). 'Traces of permuting n-additive mappings in *-prime rings', Journal of Algebra and Related Topics, 8(2), pp. 9-21. doi: 10.22124/jart.2020.16288.1200
VANCOUVER
Ali, A., Kumar, K. Traces of permuting n-additive mappings in *-prime rings. Journal of Algebra and Related Topics, 2020; 8(2): 9-21. doi: 10.22124/jart.2020.16288.1200