Semisimple lattices with respect to filter theory

Document Type : Research Paper

Authors

Department of Mathematics, University of Guilan, Rasht, Iran

Abstract

Since the theory of filters plays an important role in the theory of lattices, in this paper, we will make an intensive study of the notions of semisimple lattices and the socle of lattices based on their filters. The bulk of this paper is devoted to stating and proving analogues to several well-known theorems in the theory of the rings. It is shown that, if L is a semisimple distributive lattice, then L is finite. Also, an application of the results of this paper is given. It is shown that if R is a right distributive ring, then the lattice of right ideals of R is semisimple iff  R is a semisimple ring.

Keywords


  1. F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, 2nd ed., Springer-Verlag, New York-Berlin, 1992.
  2.  G. Birkho , Lattice theory, Amer. Math. Soc., 1973.
  3.  S. Ebrahimi-Atani, On secondary modules over Dedekind domains, Southeast Asian Bull. Math. (1) 25 (2001), 1-6.
  4.  S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, Total graph of a 0-distributive lattice,Categ. Gen. Algebr. Struct. Appl. (1) 9 (2018), 15-27.
  5. S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, Semisimple semirings with respect to co-ideals theory, Asian J. Math. (3) 11 (2018), (13 pages).
  6.  S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, A simiprime  lter-based identity-summand graph of a lattice, Le Matematiche, (2) 73 (2018), 297-318.
  7.  S. Ebrahimi Atani and M.sedghi Shanbeh Bazari, On 2-absorbing  lters of lattices, Discuss. Math. Gen. Algebra Appl. 36 (2016), 157-168.
  8.  S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, Decomposable  lters of lattices, Kragujevac J. Math. (1) 43 (2019), 59-73.
  9.  G. Gratzer, Lattice Theory: Foundation, Birkhauser, Basel, 2011.
  10.  U. Hebisch, H.J. Weinert, Semisimple classes of semirings, Algebra Colloquium, (2) 9 (2002) 177-196.
  11.  Y. Katsov, T.G. Nam, N.X. Tuyen, On subtractive semisimple semirings, Algebra Colloquium, (3) 16 (2009) 415-426.
  12.  T. Y. Lam, A First Course in Noncommutative Rings, Second Edition, Springer-Verlag, 2001.
  13.  A. Tuganbaev, Distributive Modules and Related Topics, Gordon and Breach Science Publishers, 1999.
  14.  R. Wisbauer, Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.