\L{}ukasiewicz fuzzy ideals in BCK-algebras and BCI-algebras

Document Type : Research Paper

Author

Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

Abstract

The notion of (closed) \L{}ukasiewicz fuzzy ideal is introduced, and several properties are investigated.
The relationship between \L{}ukasiewicz fuzzy subalgebra and \L{}ukasiewicz
fuzzy ideal is discussed, and characterization of a \L{}ukasiewicz fuzzy ideal is considered.
Conditions for a \L{}ukasiewicz fuzzy subalgebra to be a \L{}ukasiewicz fuzzy ideal are provided, and
conditions for the -set, q-set and O-set to be ideals are explored.

Keywords


1. Y. Huang, BCI-algebra, Science Press: Beijing, China, 2006.
2. K. Is´eki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125–130.
3. K. Is´eki and S. Tanaka, An introduction to the theory of BCK-algebras, Math.
Japon. 23 (1978), 1–26.
4. Y. B. Jun, Lukasiewicz fuzzy subalgebras in BCK-algebras and BCI-algebras,
Ann. Fuzzy Math. Inform. (2) 23 (2022), 213–223.
5. Y. B. Jun, S. M. Hong, S. J. Kim and S. Z. Song, Fuzzy ideals and fuzzy subalgebras of BCK-algebras, J. Fuzzy Math. 7 (1999), 411–418.
6. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
7. A. Paad and A. Jafari, n-fold obstinate and n-fold fantastic (pre)filters of EQalgebras, J. Algebra Relat. Topics, (1) 9 (2021), 31–50.
8. P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy
point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571–599.
9. O. G. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935–942.
10. L. A. Zadeh, Fuzzy sets, Information and Control, (3) 8 (1965), 338–353.