Let $L$ be a finite dimensional Lie algebra over an arbitrary field $F$. In this paper, we prove that the class of finite nilpotent(solvable) Lie algebras is an example of formation. Furthermore, we conclude that every finite Lie algebra has a nilpotent(solvable) residual. Finally we prove some results on Frattini and Fitting subalgebras of the nilpotent Lie algebra $L$.
Gashti, S. S. (2023). Some results on nilpotent Lie algebras. Journal of Algebra and Related Topics, 11(2), 99-103. doi: 10.22124/jart.2023.20665.1322
MLA
S. S. Gashti. "Some results on nilpotent Lie algebras". Journal of Algebra and Related Topics, 11, 2, 2023, 99-103. doi: 10.22124/jart.2023.20665.1322
HARVARD
Gashti, S. S. (2023). 'Some results on nilpotent Lie algebras', Journal of Algebra and Related Topics, 11(2), pp. 99-103. doi: 10.22124/jart.2023.20665.1322
VANCOUVER
Gashti, S. S. Some results on nilpotent Lie algebras. Journal of Algebra and Related Topics, 2023; 11(2): 99-103. doi: 10.22124/jart.2023.20665.1322