Some results on nilpotent Lie algebras

Document Type : Research Paper

Author

Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

Let L be a finite dimensional Lie algebra over an arbitrary field F. In this paper, we prove that the class of finite nilpotent(solvable) Lie algebras is an example of formation.
Furthermore, we conclude that every finite Lie algebra has a nilpotent(solvable) residual. Finally we prove some results on Frattini and Fitting subalgebras of the nilpotent Lie algebra L.

Keywords


1. D.W. Barnes, H.M. Gastineau Hills, On the theory of soluble Lie algebras, Math. Z., 106 (1969), 343-354.
2. C. Y. Chao, A nonimbedding theorem of nilpotent Lie algebras, Pac. J. Math., (2) 22 (1967), 231-234.
3. K. Erdmann and M.J. Wildon, Introduction to Lie Algebras, Springer, 2006.
4. W. Gaschutz, Zur Theorie der endlichen au osbaren Gruppen, Math. Z., 86(1962), 300-305.
5. E.I. Marshall, The Frattini subalgebra of a Lie algebra, Journal London Math.
Soc, 42 (1967), 416-422.
6. J. S. Rose, A course on group theory, Cambridge university press, Cambridge,
1978.