Essential submodules relative to a submodule

Document Type : Research Paper

Author

Department of Mathematics, University of Payame Noor,Tehran, Iran.

Abstract

‎In this paper‎, ‎our aim is to introduce and study the essential submodules of an $R$-module $M$ relative to an arbitrary submodule $T$ of $M$‎. ‎Let $T$ be an arbitrary submodule of an $R$-module $M$‎, ‎then we say that a submodule $N$ of $M$ is an essential submodule of $M$ relative to $T$‎, ‎whenever for every submodule $X$ of $M$‎, ‎$N\cap X\subseteq T$ implies that‎ ‎$(T:M)\subseteq ^{e}{\rm Ann}(X)$‎. ‎We investigate some new results concerning to this class of submodules‎. ‎Among various results we prove that for a faithful multiplication $R$-module $M$‎, ‎if the submodule $N$ of $M$ is an essential submodule of $M$ relative to $T$‎, ‎then $(N:M)$ is an essential ideal of $R$ relative to $(T:M)$‎. ‎The converse is true if $M$ is moreover a finitely generated module‎.

Keywords