Essential submodules relative to a submodule

Document Type : Research Paper

Author

Department of Mathematics, University of Payame Noor,Tehran, Iran.

Abstract

‎In this paper‎, ‎our aim is to introduce and study the essential submodules of an R-module M relative to an arbitrary submodule T of M‎. ‎Let T be an arbitrary submodule of an R-module M‎, ‎then we say that a submodule N of M is an essential submodule of M relative to T‎, ‎whenever for every submodule X of M‎, ‎NXT implies that‎ ‎(T:M)eAnn(X)‎. ‎We investigate some new results concerning to this class of submodules‎. ‎Among various results we prove that for a faithful multiplication R-module M‎, ‎if the submodule N of M is an essential submodule of M relative to T‎, ‎then (N:M) is an essential ideal of R relative to (T:M)‎. ‎The converse is true if M is moreover a finitely generated module‎.

Keywords


[1] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag Berlin Heidelberg New York, 1992.
[2] H. Ansari-Torogh and F. Farshadifar , Strong comultiplication modules, CMU.
J. Nat. Sci. (1) 8 (2009), 105-113.
[3] M. F. Atiyah, , I. G. Macdonald , Introduction to commutative algebra, Addison-
Wesley, 1969.
[4] A.Barnard, Multiplication modules, J. Algebra, 71 (1981), 74-178.
[5] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra, 16 (1988)
755-779.
[6] K.R. Goodearl and R. B. War eld , An introduction to Noncommutative Noetherian Rings, Cambridge University Press, 2004.
[7] B. W. Green, and L. Van Wyk, On the small and essential ideals in certain
classes of rings, J. Austral. Math. Soc. Ser. A, 46 (1989), 262 -271.
[8] T. Y. Lam, Lectures on Modules and Rings, Springer, 1999.
[9] S. Safaeeyan and N. Saboori Shirazi, Essential submodules with respect to an
arbitrary submodule, Journal of Mathematical Extension, (3) 7 (2013), 15-27.
[10] S. Rajaee, Some results on the quotient of co-m modules, J. Algebra Relat.
Topics, 9 (1) (2021), 79-92.
[11] S. Rajaee, S-small and S-essential submodules, J. Algebra Relat. Topics, 10
(1) (2022), 1-10.
[12] A. Tuganbaev, Rings Close to Regular, Kluwer Academic, 2002.
[13] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules,
2016.