On CP-frames and the Artin-Rees property

Document Type : Research Paper

Author

Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

Abstract

‎The set $\mathcal{C}_{c}(L)=\Big\{\alpha\in\mathcal{R}L‎ : ‎\big\vert\{ r\in\mathbb{R}‎ : ‎\coz(\alpha-{\bf r})\ne 1\big\}\big\vert\leq\aleph_0 \Big\}$ is a sub-$f$-ring of $\mathcal{R}L$‎, ‎that is‎, ‎the ring of all continuous real-valued functions on a completely regular frame $L$.‎ ‎The main purpose of this paper is to continue our investigation begun in \cite{a} of extending ring-theoretic properties in $\mathcal{R}L$ to‎ ‎the context of completely regular frames by replacing the ring $\mathcal{R}L$ with the ring $\mathcal{C}_{c}(L)$ to the context of zero-dimensional frames.‎ ‎We show that a frame $L$ is a $CP$-frame if and only if $\mathcal{C}_{c}(L)$ is a regular ring if and only if every ideal of $\mathcal{C}_{c}(L)$ is pure if and only if $\mathcal{C}_c(L)$ is an Artin-Rees ring if and only if every ideal of $\mathcal{C}_c(L)$ with the Artin-Rees property is an Artin-Rees ideal if and only if the factor ring $\mathcal{C}_{c}(L)/\langle\alpha\rangle$ is an Artin-Rees ring for any $\alpha\in\mathcal{C}_{c}(L)$ if and only if every minimal prime ideal of $\mathcal{C}_c(L)$ is an Artin-Rees ideal.‎

Keywords