1. P. Ara, K. R. Goodearl, and E. Pardo, K0 of purely in nite simple regular rings, K-Theory, (1) 26 (2002), 69-100.
2. N. Ashra and E. Nasibi, Rings in which elements are sum of an idempotent
and a regular element, Bull. Iranian Math. Soc. (3) 39 (2013), 579-588.
3. N. Ashra and E. Nasibi, r-clean rings, Math. Reports, 15(65) (2013), 125-132.
4. S. Bochner and W. T. Martin, Singularities of composite functions in several
variables. Annals of Math., 38 (1937), 293-302.
5. V. P. Camillo and H. P. Yu, Exchange Rings, units and idempotents. Comm
Algebra, 29 (2001), 2293-2295.
6. P. Crawley and B. Jonsson, Re nements for in nite direct decompositions of
algebraic systems, Paci c J. Math. (3) 14 (1964), 797-855.
7. M. Fliess, Sur divers produits de series fonnelles, Bull. Soc. Math. France, 120
(1974), 181-191.
8. K .R. Goodearl, Von Neumann regular ring, 2nd ed., Robert E. Krieger Pub-
lishing Co. Inc., Malabar, FL, 1991.
9. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra, (6)
29 (2001), 2589-2595.
10. D. Handleman, Presprecivity and cancellation in regular rings, J. Algebra, 48
(1977), 1-16.
11. A. M. Hassanein and M. A. Farahat, Some properties of Skew Hurwitz Series,
Le Mathematiche, (1) 19 (2014), 169-178.
12. A. M. Hassanein and M. A. Farahat. Some properties of Skew Hurwitz Series,
Le Mathematiche, (1) 19 (2014), 169-178.
13. A. Hurwitz, Sur un th eor eme de M. Hadamard. C. R. Acad. Sc., 128 (1899),
350-353.
14. H. Hakmi, P-Regular and P-Local rings, J. Algebra Relat. Topics, (1) 9 (2021),
1-19.
15. S. Jamshidvanda, H. Haj Seyyed Javadia and N. Vahedian Javaheria, General-
ized f-clean rings, Journal of Linear and Topological Algebra, (1) 3 (2014), 55-60.
16. W. F. Keigher, Adjunctions and comonads in di erential algebra, Pac. J. Math.,
248 (1975), 99-112.
17. W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra, (6) 25 (1997),1845-1859.
18. B. Li and L. Feng, f-Clean rings and rings having many full elements, J. Korean
Math. Soc. (2) 47 (2010), 247-261.
19. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math.
Soc. 229 (1977), 269-278.
20. K. Paykan, Nilpotent elements of skew Hurwitz series rings, Rend. Circ. Mat.
Palermo 2, (3) 65 (2016), 451-458.
21. K. Paykan, Principally quasi-Baer skew Hurwitz series rings, Bull. Unione Mat. Ital., (4) 10 (2016), 607-616.
22. G. Sharma and A. B. Singh, n-f-Semiclean rings, Global Sci-Tech. Al-Flah's
Journal of Science and Technology, (2) 10 (2018), 67-71.
23. G. Sharma and A. B. Singh, Strongly r-clean rings, Int. J. Math. Comput. Sci.
(2) 13 (2018), 207-214.
24. R. K. Sharma and A. B. Singh, On a theorem of McCoy, Mathematica Bohem-
ica (2022) (To appear).
25. R. K. Sharma and A. B. Singh, Skew Hurwitz series rings and modules with
Beachy-Blair conditions, Kragujevac J. Math. (4) 47 (2023), 511-521.
26. R. K. Sharma and A. B. Singh, Zip property of skew Hurwitz series rings and
modules. Serdica Math. J., 45 (2019), 35-54.
27. E. J. Taft, Hurwitz invertibility of linearly recursive sequences, Congr. Numer-
antium, 73 (1990), 37-40.
28. R. B. War eld Jr, Exchange rings and decompositions of modules, Mathematis-
che Annalen, (1) 199 (1972), 31-36.
29. Y. Ye, Semiclean Rings, Comm. Alg, (11) 31 (2003), 5609-5625.