Classical properties of skew Hurwitz series rings

Document Type : Research Paper

Authors

1 Department of Computer Science and Engineering, Jamia Hamdard, New Delhi, India

2 Department of Applied Sciences, Apeejay Stya University, Gurgaon, Haryana (India), 122001, India

Abstract

In this paper, we study the transfer of some algebraic properties from the ring R to the ring of skew Hurwitz series (HR,ω), where ω is an automorphism of R and vice versa. Different properties of skew Hurwitz series are studied with respect to various clean ring structures and semiclean ring structures.

Keywords


1. P. Ara, K. R. Goodearl, and E. Pardo, K0 of purely in nite simple regular rings, K-Theory, (1) 26 (2002), 69-100.
2. N. Ashra  and E. Nasibi, Rings in which elements are sum of an idempotent
and a regular element, Bull. Iranian Math. Soc. (3) 39 (2013), 579-588.
3. N. Ashra  and E. Nasibi, r-clean rings, Math. Reports, 15(65) (2013), 125-132.
4. S. Bochner and W. T. Martin, Singularities of composite functions in several
variables. Annals of Math., 38 (1937), 293-302.
5. V. P. Camillo and H. P. Yu, Exchange Rings, units and idempotents. Comm
Algebra, 29 (2001), 2293-2295.
6. P. Crawley and B. Jonsson, Re nements for in nite direct decompositions of
algebraic systems, Paci c J. Math. (3) 14 (1964), 797-855.
7. M. Fliess, Sur divers produits de series fonnelles, Bull. Soc. Math. France, 120
(1974), 181-191.
8. K .R. Goodearl, Von Neumann regular ring, 2nd ed., Robert E. Krieger Pub-
lishing Co. Inc., Malabar, FL, 1991.
9. J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra, (6)
29 (2001), 2589-2595.
10. D. Handleman, Presprecivity and cancellation in regular rings, J. Algebra, 48
(1977), 1-16.
11. A. M. Hassanein and M. A. Farahat, Some properties of Skew Hurwitz Series,
Le Mathematiche, (1) 19 (2014), 169-178.
12. A. M. Hassanein and M. A. Farahat. Some properties of Skew Hurwitz Series,
Le Mathematiche, (1) 19 (2014), 169-178.
13. A. Hurwitz, Sur un th eor eme de M. Hadamard. C. R. Acad. Sc., 128 (1899),
350-353.
14. H. Hakmi, P-Regular and P-Local rings, J. Algebra Relat. Topics, (1) 9 (2021),
1-19.
15. S. Jamshidvanda, H. Haj Seyyed Javadia and N. Vahedian Javaheria, General-
ized f-clean rings, Journal of Linear and Topological Algebra, (1) 3 (2014), 55-60.
16. W. F. Keigher, Adjunctions and comonads in di erential algebra, Pac. J. Math.,
248 (1975), 99-112.
17. W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra, (6) 25 (1997),1845-1859.
18. B. Li and L. Feng, f-Clean rings and rings having many full elements, J. Korean
Math. Soc. (2) 47 (2010), 247-261.
19. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math.
Soc. 229 (1977), 269-278.
20. K. Paykan, Nilpotent elements of skew Hurwitz series rings, Rend. Circ. Mat.
Palermo 2, (3) 65 (2016), 451-458.
21. K. Paykan, Principally quasi-Baer skew Hurwitz series rings, Bull. Unione Mat. Ital., (4) 10 (2016), 607-616.
22. G. Sharma and A. B. Singh, n-f-Semiclean rings, Global Sci-Tech. Al-Flah's
Journal of Science and Technology, (2) 10 (2018), 67-71.
23. G. Sharma and A. B. Singh, Strongly r-clean rings, Int. J. Math. Comput. Sci.
(2) 13 (2018), 207-214.
24. R. K. Sharma and A. B. Singh, On a theorem of McCoy, Mathematica Bohem-
ica (2022) (To appear).
25. R. K. Sharma and A. B. Singh, Skew Hurwitz series rings and modules with
Beachy-Blair conditions, Kragujevac J. Math. (4) 47 (2023), 511-521.
26. R. K. Sharma and A. B. Singh, Zip property of skew Hurwitz series rings and
modules. Serdica Math. J., 45 (2019), 35-54.
27. E. J. Taft, Hurwitz invertibility of linearly recursive sequences, Congr. Numer-
antium, 73 (1990), 37-40.
28. R. B. War eld Jr, Exchange rings and decompositions of modules, Mathematis-
che Annalen, (1) 199 (1972), 31-36.
29. Y. Ye, Semiclean Rings, Comm. Alg, (11) 31 (2003), 5609-5625.