1. M. Aghapournahr, Upper bounds for niteness of generalized local cohomology
modules, J. Algebr. Syst. 1 (2013), 1-9.
2. M. Aghapournahr, Kh. Ahmadi-amoli and M. Y. Sadeghi, Co niteness and
Artinianness of certain local cohomology modules, Ricerche mat. 65 (2016),21-36.
3. M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra, 320 (2008), 1275-1287.
4. J. Amjadi and R. Naghipour, Cohomological dimension of generalized local
cohomology modules, Algebra Colloq. 15 (2008), 303-308.
5. J. Asadollahi, K. Khashyarmanesh and Sh. Salarian, A generalization of
the co niteness problem in local cohomology modules, J. Aust. Math. Soc. 75
(2003), 313-324.
6. M. Asgharzadeh and M. Tousi, A uni ed approach to local cohomology modules
using Serre classes, Canad. Math. Bull. 53 (2010), 577-586.
7. M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative
Noetherian rings, J. London Math. Soc. (2). 19 (1979), 402-410.
8. M. H. Bijan-Zadeh, A common generalization of local cohomology theories,
Glasgow Math. J. 21 (1980), 173-181.
9. N. Bourbaki, Algebre commutative, Hermann, Paris, 1961-1983.
10. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction
with Geometric Applications, Cambridge University Press, Cambridge,
1998.
11. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press,
Cambridge, 1993.
12. C. Bui, Annihilators and attached primes of local cohomology modules with
respect to a system of ideals, Algebr. Struct. their Appl. 7 (2020), 179-193.
13. L. Chu and Q. Wang, Some results on local cohomology modules de ned by a
pair of ideals, J. Math. Kyoto Univ. 49 (2009), 193-200.
14. F. Dehghani-Zadeh, On the niteness properties of generalized local cohomology
modules, Int. Electron. J. Algebra 10 (2011), 113-122.
15. M. T. Dibaei and A. Vahidi, Artinian and non-Artinian local cohomology modules,
Canad. Math. Bull. 54 (2011), 619-629.
16. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France, 90 (1962), 323-
448.
17. J. Herzog, Komplexe, Au oungen und Dualitat in der lokalen Algebra, Habilitationsschrift,
Universitat Regensburg, 1974.
18. M. Lot Parsa, Bass numbers of generalized local cohomology modules with
respect to a pair of ideals, Asian-Eur. J. Math. 11 (2018), 1850019-1-1850019-9.
19. M. Lot Parsa, Sdepth on ZD-modules and local cohomology, Czech. Math. J. 71 (2021), 755-764.
20. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989.
21. T. T. Nam, N. M. Tri and N. V. Dong, Some properties of generalized local cohomology
modules with respect to a pair of ideals, Internat. J. Algebra Comput. 24 (2014), 1043-1054.
22. J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.
23. R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed
support de ned by a pair of ideals, J. Pure Appl. Algebra, 213 (2009), 582-600.
24. N. M. Tri, Some results on top generalized local cohomology modules with respect to a system of ideals, Turk. J. Math. 44 (2020), 1673-1686.
25. A. Vahidi, Cohomological dimensions with respect to sum and intersection of ideals, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2019), 115-120.
26. S. Yassemi, Generalized section functors, J. Pure Appl. Algebra 95 (1994),103-119.
27. N. Zamani, Generalized local cohomology relative to (I; J), Southeast Asian Bull. Math. 35 (2011), 1045-1050.