Some Cayley graphs with propagation time of at most two

Document Type : Research Paper

Author

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

In this paper the zero forcing number as well as propagation time of $Cay(G,\Omega),$ where $G$ is a finite group and $\Omega \subset G \setminus \lbrace 1 \rbrace$ is an inverse closed generator set of $G$ is studied. In particular, it is shown that the propagation time of $Cay(G,\Omega)$ is at most two for some special generators.
 

Keywords


1. AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S.
Butler, S.M. Cioaba, D. Cvetkoviacutec, S.M. Fallat, C. Godsil, W. Haemers,
L. Hogben, R. Mikkel son, S. Narayan, O. Pryporova, I. Sciriha, W. So, D.
Stevanoviacutec, H. van der Holst, K. Vander Meulen, A.W. Wehe), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 7 428 (2008),1628-1648.
2. A. Berman, S. Friedland, L. Hogben, U.G. Rothblum, and B. Shader, An upper
bound for the minimum rank of a graph, Linear Algebra Appl. (7) 429 (2008),
1629-1638.
3. D. Burgarth, and V. Giovannetti, Full control by locally induced relaxation,
Phys. Rev. Lett. (10) 99 (2007),100501.
4. S. Chokani, F. Movahedi and S. M. Taheri, Some results of the minimum edge
dominating energy of the Cayley graphs for the  nite group Sn;, J. Algebra
Relat. Topics, (2) 11 (2023), 135-145.
5. C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange and D.D. Row, Vertex and
edge spread of zero forcing number, maximum nullity, and minimum rank of a
graph, Linear Algebra Appl. (12) 436 (2012), 4352-4372.
6. L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension
and zero forcing number of trees and unicyclic graphs, Acta Math. Sin. (Engl.
Ser.), (6) 33 (2017), 731-747.
7. L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker and M. Young, Prop-
agation time for zero forcing on a graph, Discrete Appl. Math. (13-14) 160
(2012), 1994-2005.
8. Z. Rameh and E. Vatandoost, Some Cayley graphs with Propagation time 1,
Journal of the Iranian Mathematical Society, (2) 2 (2021), 111-122.
9. F. Ramezani and E. Vatandoost, Domination and Signed Domination Number
of Cayley Graphs,Iran. J. Math. Sci. Inform. (1) 14 (2019), 35-42.
10. S. Severini, Nondiscriminatory propagation on trees, J. Phys. A, (48) 41 (2008),
P.482002.
11. E. Vatandoost and Y. Golkhandy Pour, On the zero forcing number of some
Cayley graphs, Algebraic Structures and Their Applications, (2) 4 (2017), 15-25.
12. E. Vatandoost, F. Ramezani and S. Alikhani, On the zero forcing number of
generalized Sierpinski graphs, Trans. Comb. (1) 8 (2019), 41-50.