Let R be a commutative ring with identity and M be an R-module. Let Ψ : S(M) →S(M) ∪ ∅ be a function, where S(M) denotes the set of all submodules of M. The main purpose of this paper is to introduce and investigate the notion of strongly -2-absorbing second submodules of M as a generalization of strongly 2-absorbing second and -second submodules of M.
Maleki-Roudposhti, S. , Farshadifar, F. and Ansari-Toroghy, H. (2025). Strongly Ψ -2-absorbing second submodules. Journal of Algebra and Related Topics, 12(2), 17-23. doi: 10.22124/jart.2023.22744.1420
MLA
Maleki-Roudposhti, S. , , Farshadifar, F. , and Ansari-Toroghy, H. . "Strongly Ψ -2-absorbing second submodules", Journal of Algebra and Related Topics, 12, 2, 2025, 17-23. doi: 10.22124/jart.2023.22744.1420
HARVARD
Maleki-Roudposhti, S., Farshadifar, F., Ansari-Toroghy, H. (2025). 'Strongly Ψ -2-absorbing second submodules', Journal of Algebra and Related Topics, 12(2), pp. 17-23. doi: 10.22124/jart.2023.22744.1420
CHICAGO
S. Maleki-Roudposhti , F. Farshadifar and H. Ansari-Toroghy, "Strongly Ψ -2-absorbing second submodules," Journal of Algebra and Related Topics, 12 2 (2025): 17-23, doi: 10.22124/jart.2023.22744.1420
VANCOUVER
Maleki-Roudposhti, S., Farshadifar, F., Ansari-Toroghy, H. Strongly Ψ -2-absorbing second submodules. Journal of Algebra and Related Topics, 2025; 12(2): 17-23. doi: 10.22124/jart.2023.22744.1420