On the maximal subsemigroups and rank properties of certain semigroups of partial injective contractions of a finite chain

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Physical Sciences, Bayero University Kano, Nigeria

2 Department of Mathematics and Computer Science, Borno State University, P. M. B. 1122, Njimtilo, Maiduguri, Nigeria

Abstract

‎Denote $[n]$ to be a finite $n$ chain $\{1,2,\ldots,n\}$‎. ‎Let $\mathcal{CI}_{n}$ be the semigroup of partial injective contractions on $[n]$‎. ‎Denote $\mathcal{ODDP}_{n}‎, ‎\mathcal{ODCI}_{n}$ and $\mathcal{OCI}_{n}$ to be the semigroups of order-preserving order-decreasing partial isometries‎, ‎order-preserving order-decreasing and order-preserving partial injective contractions‎, ‎respectively‎. ‎In this paper‎, ‎we characterize all the maximal subsemigroups of $\mathcal{ODDP}_{n}$‎, ‎$\mathcal{ODCI}_{n}$ and $\mathcal{OCI}_{n}$‎, ‎respectively‎. ‎We also characterize the regular elements‎, ‎Green's relations‎, ‎their Starred analogues and rank properties of $\mathcal{ODCI}_{n}$.‎

Keywords

Main Subjects


  1. B. Ali, M. A. Jada, and M. M. Zubairu, On the ranks of certain semigroups of order preserving partial isometries of a  nite chain. J. Algebra and Rel. Top., (2) 6 (2018), 15-33.
  2.  F. Al-Kharousi, R. Kehinde and A. Umar, On the semigroup of partial isometries of a  nite chain. Comm. Algebra, 44 (2016), 639-647.
  3.  F. Al-Kharousi, G. U. Garba, M. J. Ibrahium, A. T. Imam and A. Umar, On the semigroup of  nite order-preserving partial injective contraction mappings of a  nite chain. (Accepted, Afrika Mathematika).
  4. L. Brucci, and L. E. Picasso, Representations of semigroups of partial isometries. Bull. Lond. Math. Soc., 39 (2007), 792-802.
  5. I. Dimitrova and J. Koppitz, The maximal subsemigroups of the ideals of some semigroup of partial injections. Discuss. Math.- Gen Algebra Appl., 29 (2009), 153-167.
  6.  I. Dimitrova and J. Koppitz, On the maximal subsemigroups of some transformation semigroups. Asian-Eur. J. Math., 1 (2008), 189-202.
  7. J. East, J. Kumar, D. M. 2. James and A. W. Wilf, Maximal subsemigroups of nite transformation and diagram monoids. J. Algebra, 504 (2018), 176-216.
  8.  J. B. Fountain, Adequate semigroups. Proc. Edinb. Math. Soc., 22 (1979), 113-125.
  9. O. Ganyushkin and V. Mazorchuck, On the structure of IOn. Semigroup Forum, 66 (2003), 455-483.
  10. O. Ganyushkin and V. Mazorchuck, Classical Finite Transformation Semi-groups. Springer􀀀Verlag: London Limited, 2009.
  11.  G. U. Garba, Nilpotents in semigroup of partial injective order preserving mappings. Semigroup Forum, 48 (1994), 37-49.
  12.  G. U. Garba, Nilpotents in semigroups of partial order-preserving transformations. Proc. Edinb. Math. Soc., 37 (1994), 361-377.
  13. G. U. Garba, On the nilpotents rank of partial transformation semigroup. Port. Math., 51 (1994), 163-172.
  14.  G. M. S. Gomes and J. M. Howie, On the ranks of certain  nite semigroups of transformations. Math. Proc. Camb. Philos. Soc., 101 (1987), 395-403.
  15. G. M. S. Gomes and J. M. Howie, A P􀀀 theorem for inverse semigroups with zero. Port. Math., 53 (1996), 257-278.
  16.  N. Graham, R. Graham and J. Rhodes, Maximal subsemigroup of  nite semi-groups. J. Comb. Theory, 4 (1968) 203-209.
  17.  P. M. Higgins, Techniques of semigroup theory. Oxford University Press, 1992.
  18.  J. M. Howie, Fundamental of semigroup theory, London Mathematical Society, New series 12. The Clarendon Press, Oxford University Press, 1995.
  19. J. M. Howie, M. Paula, O. and M. Smith, Inverse semigroups generated by nilpotent transformations. Proc. R. Soc. Edinb. A: Math., 99 (1984), 153-162.
  20. R. Kehinde, S. O. Makanjuola and A. Umar, On the semigroup of order-decreasing partial isometries of a  nite chain. J. Algebra its Appl., (2015), 1-11.
  21.  M. V. Lawson, The structure of 0􀀀E-unitary inverse semigroups I: the monoid case. Proc. Edinb. Math. Soc., 42 (1999), 497-520.
  22.  J. W. Nicholas, A class of maximal inverse subsemigroups of full transformation semigroup. Semigroup Forum, 13 (1976), 187-188.
  23.  N. R. Reilly, Maximal inverse subsemigroups of full transformation semigroup. Semigroup Forum, 15 (1978), 319-326.
  24.  A. Umar, On the semigroups of partial one-to-one order-decreading  nite transformations. Proc. R. Soc. Edinb. A: Math., 123 (1993), 355-363.
  25.  A. Umar, Semigroups of order-decreading transformations, (PhD thesis). St. Andrews Research Repository (1993). http://hdl.handle.net/10023/2834.
  26.  A. Umar and M. M. Zubairu, On certain semigroups of contraction mappings of a  nite chain. Algebra Discret. Math., (2) 32 (2021), 299-320.
  27. J. Wallen, Lawrence, Semigroup of partial isometries. Bull. Amer. Math. Soc., 75 (1969), 763-764.
  28.  X. Yang, A classi catrion of maximal inverse subsemigroups of the  nite symmetric inverse semigroups. Comm. Algebra, (8) 27 (1999), 4089-4096.
  29. X. Yang, A classi catrion of maximal subsemigroups of the  nite order-preserving transformation semigroups. Comm. Algebra, (3) 28 (2000), 1503-1513.