In this paper, a new kind of graph is introduced and investigated. The minimal ideal graph for a ring $R$ with unity is an undirected graph whose vertex set contains all non-trivial ideals of $R$. We denote the graph by $mI(R)$ and the vertex set by $V(mI(R))$. Two vertices $P,Q \in V(mI(R))$ are adjacent if a minimal ideal $p$ of $R$ exists with $p\subset P$ and $p \subset Q$. We study the correlation of algebraic properties and graph theoretic properties of $mI(R)$. In this article, connectedness, diameter, clique number, chromatic number, regular character, cut vertex etc. are discussed.
D. F. Anderson and A. Badawi,The total graph of a commutative ring, J. of Algebra, 320 (2008), 2706-2719.
S. E. Atani, S .D. P. Hesari and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin., (1) 58 (2017), 1-12.
M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.
R. Balkrishnan and K. Ranganathan, A text book of graph theory, Springer-verlag New York, Inc., Reprint, 2008.
B. Barman and K. K. Rajkhowa, Non comaximal graph of ideals of a ring, Proc. Indian Acad. Sci.(Math.Sci.), (2019), 129:76
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen,Intersection graphs of ideals of rings, Discrete Math., (17) 309 (2009), 5381-5392.
A. Gaur. and A. Sharma,Maximal graph of a commutative ring, Int. J. of Algebra, 7 (2013), 581-588.
T. W. Haynes, S. T. Hedetniemi and P. J.(eds.) Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, NY, 1998.
J. A. Huckaba, Commutative rings with zero-divisors, Marcel-Dekker, New York, Basel, 1988.
I. Kaplansky,Commutative rings, revised Edition, University of Chicago Press, Chicago, 1974.
F. Kasch,Modules and rings, Academic Press Inc. (London) Ltd., 1982.
J. Lambeck, Lectures on rings and modules, Blaisdell Publishing Company, Waltham, Toronto, London, 1966.
K. K. Rajkhowa and H. k. Saikia, Center of intersection graph of submodules of a module, AKCE International Journal of Graphs and Combinatorics, (2) 16 (2019), 198-203.
K. K. Rajkhowa and H. K. Saikia, Prime intersection graph of ideals of a ring, Proceedings - Mathematical Sciences, 130 (2020).
A. Sharma and A. Gaur, Line graphs associated to the maximal graph, Journal of algebra and related topics, (1) 3 (2015), 1-11.
P. K. Sharma and S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra, (1) 176 (1995), 124-127.
Barman, B. and Rajkhowa, K. K. (2025). A graph associated with minimal ideals of a ring. Journal of Algebra and Related Topics, 12(2), 155-163. doi: 10.22124/jart.2024.23365.1467
MLA
Barman, B. , and Rajkhowa, K. K.. "A graph associated with minimal ideals of a ring", Journal of Algebra and Related Topics, 12, 2, 2025, 155-163. doi: 10.22124/jart.2024.23365.1467
HARVARD
Barman, B., Rajkhowa, K. K. (2025). 'A graph associated with minimal ideals of a ring', Journal of Algebra and Related Topics, 12(2), pp. 155-163. doi: 10.22124/jart.2024.23365.1467
CHICAGO
B. Barman and K. K. Rajkhowa, "A graph associated with minimal ideals of a ring," Journal of Algebra and Related Topics, 12 2 (2025): 155-163, doi: 10.22124/jart.2024.23365.1467
VANCOUVER
Barman, B., Rajkhowa, K. K. A graph associated with minimal ideals of a ring. Journal of Algebra and Related Topics, 2025; 12(2): 155-163. doi: 10.22124/jart.2024.23365.1467